cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A350952 The smallest number whose binary expansion has exactly n distinct runs.

Original entry on oeis.org

0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2022

Keywords

Comments

Positions of first appearances in A297770 (with offset 0).
The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - Michael S. Branicky, Feb 14 2022

Examples

			The terms and their binary expansions begin:
       0:                   ()
       1:                    1
       2:                   10
      11:                 1011
      38:               100110
     311:            100110111
    2254:         100011001110
   36079:     1000110011101111
  549790: 10000110001110011110
For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The version for run-lengths instead of runs is A165933, for A165413.
Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
  • PARI
    a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<Andrew Howroyd, Feb 15 2022
  • Python
    def a(n): # returns term by construction
        if n == 0: return 0
        q, r = divmod(n, 2)
        if r == 0:
            s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
            assert len(s) == n*(n//2+1)//2
        else:
            s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
            assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
        return int(s, 2)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
    

Extensions

a(9)-a(19) from Michael S. Branicky, Feb 14 2022

A351203 Number of integer partitions of n of whose permutations do not all have distinct runs.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The a(4) = 1 through a(9) = 16 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (2211)   (331)    (422)      (522)
                (21111)  (511)    (611)      (711)
                         (3211)   (3221)     (3321)
                         (22111)  (3311)     (4221)
                         (31111)  (4211)     (4311)
                                  (22211)    (5211)
                                  (32111)    (22221)
                                  (41111)    (32211)
                                  (221111)   (33111)
                                  (2111111)  (42111)
                                             (51111)
                                             (222111)
                                             (321111)
                                             (2211111)
                                             (3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
		

Crossrefs

The version for run-lengths instead of runs is A144300.
The version for normal multisets is A283353.
The Heinz numbers of these partitions are A351201.
The complement is counted by A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions, ranked by A333489.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Permutations[#],_?(!UnsameQ@@Split[#]&)]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    from itertools import permutations, groupby
    from collections import Counter
    def A351203(n):
        c = 0
        for s, p in partitions(n,size=True):
            for q in permutations(Counter(p).elements(),s):
                if max(Counter(tuple(g) for k, g in groupby(q)).values(),default=0) > 1:
                    c += 1
                    break
        return c # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A000041(n) - A351204(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 27 2024

A043562 Number of runs in base-10 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

Blecksmith, Filaseta, & Nicol show that lim a(k^n) = infinity whenever k is not a power of 10. More generally, in base b, the limit is infinity exactly when log k/log b is irrational. - Charles R Greathouse IV, Jan 29 2014
Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences. - Clark Kimberling, Feb 04 2018

Crossrefs

Cf. A297778 (number of distinct runs), A297770.

Programs

A043555 Number of runs in base-3 representation of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 1, 2, 3, 3, 4, 3, 4, 4, 4, 3, 2, 3, 3, 2, 1, 2, 3, 3, 2, 3, 4, 4, 4, 3, 4, 3, 3, 2, 2, 3, 3, 4, 3, 4, 4, 4, 3, 3, 4, 4, 3, 2, 3, 4, 4, 3, 2, 3, 3, 3, 2, 3, 2, 2, 1, 2, 3, 3, 4, 3, 4, 4, 4, 3
Offset: 0

Views

Author

Keywords

Comments

Every positive integer occurs infinitely many times. See A297770 for a guide to related sequences.
Having a(0) = 1 (rather than a(0) = 0) is debatable, on the grounds that a(0) = 1 is determined by our culture, rather than the underlying mathematics. See my August 2020 comment in A145204. - Peter Munn, Jul 12 2024
From M. F. Hasler, Jul 13 2024: (Start)
The base-2 version has a(0) = 0, corresponding to the convention that 0 has zero digits, which is the more logical (but maybe less human) convention, such that, e.g., b^n is the least number with n+1 digits in base b (<=> b^n - 1 is the largest number with n digits), valid also for 0. Here and in A043556 (base 4) the convention is that 0 has one digit, '0'.
"Runs" means substrings of consecutive equal digits, here in the base-3 representation of the numbers. See Example for details. (End)

Examples

			From _M. F. Hasler_, Jul 13 2024: (Start)
Numbers n = 0, 1, 2, 3, 4, 5, ... are written '0', '1', '2', '10', '11', '12', ... in base 3. The first three have one single digit, so there is just 1 "run" (= subsequence of equal digits), whence a(0) = a(1) = a(2) = 1.
In '10' we have a "run" of '1's of length 1, followed by a run of '0's of length 1, so there are a(3) = 2 runs.
In '11' we have again one single run, here of 2 digits '1', whence a(4) = 1. (End)
		

Crossrefs

Cf. A005811 (in base 2), A043556 (in base 4), A145204, A297770, A297771 (number of distinct runs).
Cf. A033113.

Programs

  • Maple
    NRUNS := proc(L::list)
        local a,i;
        a := 1 ;
        for i from 2 to nops(L) do
            if op(i,L) <> op(i-1,L) then
                a := a+1 ;
            end if
        end do:
        a ;
    end proc:
    A043555 := proc(n)
        convert(n,base,3) ;
        NRUNS(%) ;
    end proc:
    seq(A043555(n),n=0..80) ; # R. J. Mathar, Jul 12 2024
    # second Maple program:
    a:= n-> `if`(n<3, 1, a(iquo(n, 3))+`if`(n mod 9 in {0, 4, 8}, 0, 1)):
    seq(a(n), n=0..89);  # Alois P. Heinz, Jul 13 2024
  • Mathematica
    b = 3; s[n_] := Length[Split[IntegerDigits[n, b]]];
    Table[s[n], {n, 1, 200}]
  • PARI
    a(n)=my(d=digits(n,3)); sum(i=2,#d,d[i]!=d[i-1])+1 \\ Charles R Greathouse IV, Jul 20 2014
    
  • Python
    from itertools import groupby
    from sympy.ntheory import digits
    def A043555(n): return len(list(groupby(digits(n,3)[1:]))) # Chai Wah Wu, Jul 13 2024

Extensions

Updated by Clark Kimberling, Feb 03 2018

A353929 Number of distinct sums of runs (of 0's or 1's) in the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2022

Keywords

Comments

Assuming the binary digits are not all 1, this is one more than the number of different lengths of runs of 1's in the binary expansion of n.

Examples

			The binary expansion of 183 is (1,0,1,1,0,1,1,1), with runs (1), (0), (1,1), (0), (1,1,1), with sums 1, 0, 2, 0, 3, of which four are distinct, so a(183) = 4.
		

Crossrefs

For lengths of all runs we have A165413, firsts A165933.
Numbers whose binary expansion has distinct runs are A175413.
For runs instead of run-sums we have A297770, firsts A350952.
For prime indices we have A353835, weak A353861, firsts A006939.
For standard compositions we have A353849, firsts A246534.
Positions of first appearances are A353930.
A005811 counts runs in binary expansion.
A044813 lists numbers with distinct run-lengths in binary expansion.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Union[Total/@Split[IntegerDigits[n,2]]]],{n,0,100}]
  • Python
    from itertools import groupby
    def A353929(n): return len(set(sum(map(int,y[1])) for y in groupby(bin(n)[2:]))) # Chai Wah Wu, Jun 26 2022

A353930 Smallest number whose binary expansion has n distinct run-sums.

Original entry on oeis.org

1, 2, 11, 183, 5871, 375775, 48099263, 12313411455, 6304466665215, 6455773865180671, 13221424875890015231, 54154956291645502388223, 443637401941159955564326911, 7268555193403964711965932118015, 238176016577461115681699663643131903, 15609103422420491677315869156516292427775
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms, binary expansions, and standard compositions begin:
       1:                    1  (1)
       2:                   10  (2)
      11:                 1011  (2,1,1)
     183:             10110111  (2,1,2,1,1,1)
    5871:        1011011101111  (2,1,2,1,1,2,1,1,1,1)
  375775:  1011011101111011111  (2,1,2,1,1,2,1,1,1,2,1,1,1,1,1)
		

Crossrefs

Essentially the same as A215203.
For prime indices instead of binary expansion we have A006939.
For lengths instead of sums of runs we have A165933 = firsts in A165413.
Numbers whose binary expansion has all distinct runs are A175413.
For standard compositions we have A246534, firsts of A353849.
For runs instead of run-sums we have A350952, firsts of A297770.
These are the positions of first appearances in A353929.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
A353835 counts partitions with all distinct run-sums, weak A353861.
A353864 counts rucksack partitions.

Programs

  • Mathematica
    qe=Table[Length[Union[Total/@Split[IntegerDigits[n,2]]]],{n,1,10000}];
    Table[Position[qe,i][[1,1]],{i,Max@@qe}]
  • PARI
    a(n) = {my(t=1); if(n==2, t<<=1, for(k=3, n, t = (t<Andrew Howroyd, Jan 01 2023

Extensions

Offset corrected and terms a(7) and beyond from Andrew Howroyd, Jan 01 2023

A165933 Least integer, k, whose value is n in A165413.

Original entry on oeis.org

1, 4, 35, 536, 16775, 1060976, 135007759, 34460631520, 17617985239071, 18027600169142208, 36907002795598798911, 151143401509104346210176, 1238053384151947477501575295, 20283338091738780737237428502272, 664629209970464486086782992577855743
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2009

Keywords

Comments

An alternative name: The smallest number whose binary expansion has exactly n distinct run-lengths. - Gus Wiseman, Feb 21 2022
Term a(n) has one 1, followed by n 0's, then two 1's, (n-1) 0's, ..., up to n runs; see Python program. - Michael S. Branicky, Feb 22 2022

Examples

			a(1) in binary is 1, a(2) in binary is 100, a(3) in binary is 100011, a(4) in binary is 1000011000, etc.
From _Gus Wiseman_, Feb 21 2022: (Start)
The terms and their binary expansions begin:
  n              a(n)
  1:               1 =                                             1
  2:               4 =                                           100
  3:              35 =                                        100011
  4:             536 =                                    1000011000
  5:           16775 =                               100000110000111
  6:         1060976 =                         100000011000001110000
  7:       135007759 =                  1000000011000000111000001111
  8:     34460631520 =          100000000110000000111000000111100000
  9:  17617985239071 = 100000000011000000001110000000111100000011111
(End)
		

Crossrefs

A subset of A044813 (distinct run-lengths) and of A175413 (distinct runs).
These are the positions of first appearances in A165413.
The version for runs instead of run-lengths is A350952, firsts of A297770.
A000120 counts binary weight.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A329739 = compositions, for runs A351013.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    g[n_] := Table[ {Table[1, {i}], Table[0, {n - i + 1}]}, {i, Floor[(n + If[ OddQ@n, 1, 0])/2]}]; f[n_] := FromDigits[ If[ OddQ@n, Flatten@ Most@ Flatten[ g@n, 1], Flatten@ g@n], 2]; Array[f, 14]
    s=Table[Length[Union[Length/@Split[IntegerDigits[n,2]]]],{n,0,1000}]; Table[Position[s,k][[1,1]]-1,{k,Union[s]}] (* Gus Wiseman, Feb 21 2022 *)
  • Python
    def a(n): # returns term by construction
        if n == 1: return 1
        q, r = divmod(n+1, 2)
        s = "".join("1"*i + "0"*(n+1-i) for i in range(1, q+1))
        if r == 0: s = s.rstrip("0")
        return int(s, 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 22 2022

Extensions

a(15) and beyond from Michael S. Branicky, Feb 22 2022

A043556 Number of runs in base-4 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 3, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 2, 1, 2, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 2, 3, 3, 3, 2, 1, 2, 2, 3, 3
Offset: 0

Views

Author

Keywords

Comments

Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences.

Crossrefs

Cf. A297772 (number of distinct runs), A297770.

Programs

  • Mathematica
    b = 4; s[n_] := Length[Split[IntegerDigits[n, b]]];
    Table[s[n], {n, 1, 200}]
  • Python
    from itertools import groupby
    from sympy.ntheory import digits
    def A043556(n): return len(list(groupby(digits(n,4)[1:]))) # Chai Wah Wu, Jul 13 2024

Formula

a(n) << log n. In particular, a(n) <= log(n)/log(4) + 1. - Charles R Greathouse IV, Jul 13 2024

Extensions

Updated by Clark Kimberling, Feb 03 2018

A043567 Number of runs in base-15 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences.

Examples

			For n = 226, its base-15 representation is "101" as 226 = 1*(15^2) + 0*(15^1) + 1*(15^0). "101" has three runs, thus a(226) = 3.
For n = 482, its base-15 representation is "222" as 482 = 2*(15^2) + 2*(15^1) + 2*(15^0). "222" has just one run, thus a(482) = 1.
		

Crossrefs

Cf. A043289, A043542, A297783 (number of distinct runs), A297770.

Programs

  • Mathematica
    Table[Length@ Split@ IntegerDigits[n, 15], {n, 0, 105}] (* Michael De Vlieger, Oct 10 2017 *)
  • Scheme
    (define (A043567 n) (let loop ((n n) (runs 1) (pd (modulo n 15))) (if (zero? n) runs (let ((d (modulo n 15))) (loop (/ (- n d) 15) (+ runs (if (not (= d pd)) 1 0)) d))))) ;; Antti Karttunen, Oct 10 2017

Extensions

More terms from Antti Karttunen, Oct 10 2017
Updated by Clark Kimberling, Feb 04 2018
Previous Showing 21-30 of 57 results. Next