cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A298040 Coordination sequence of Dual(4.6.12) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 20, 24, 40, 40, 60, 56, 80, 72, 100, 88, 120, 104, 140, 120, 160, 136, 180, 152, 200, 168, 220, 184, 240, 200, 260, 216, 280, 232, 300, 248, 320, 264, 340, 280, 360, 296, 380, 312, 400, 328, 420, 344, 440, 360, 460, 376, 480, 392, 500, 408, 520, 424, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Crossrefs

Cf. A072154, A298041 (partial sums), A298036 (12-valent node), A298038 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,4,20,24,40,40},60] (* Harvey P. Dale, Apr 06 2022 *)

Formula

Conjecture: For n>0, a(n)=10n if n even, otherwise 8n.
Conjectures from Colin Barker, Apr 01 2020: (Start)
G.f.: (1 + 4*x + 18*x^2 + 16*x^3 + x^4 - 4*x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = (9 + (-1)^n)*n for n>1.
a(n) = 2*a(n-2) - a(n-4) for n>5.
(End)

Extensions

Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020

A234275 Expansion of (1+2*x+9*x^2-4*x^3)/(1-x)^2.

Original entry on oeis.org

1, 4, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2013

Keywords

Comments

Also the coordination sequence for a point of degree 4 in the tiling of the Euclidean plane by right triangles (with angles Pi/2, Pi/4, Pi/4). These triangles are fundamental regions for the Coxeter group (2,4,4). In the notation of Conway et al. 2008 this is the tiling *442. The coordination sequence for a point of degree 8 is given by A022144. - N. J. A. Sloane, Dec 28 2015
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood. Initialized with a single black (ON) cell at stage zero. - Robert Price, May 28 2016

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5. See p. 191.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

For partial sums see A265056.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 4}, LinearRecurrence[{2, -1}, {16, 24}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec(-(4*x^3-9*x^2-2*x-1)/(x-1)^2 + O(x^100)) \\ Colin Barker, Jul 10 2015

Formula

a(n) = A022144(n), n>1. - R. J. Mathar, Jan 11 2014
From Colin Barker, Jul 10 2015: (Start)
a(n) = 8*n, n>1.
a(n) = 2*a(n-1) - a(n-2) for n>3.
G.f.: -(4*x^3-9*x^2-2*x-1) / (x-1)^2.
(End)

A298014 Coordination sequence of snub-632 tiling with respect to a trivalent node of type short-short-long.

Original entry on oeis.org

1, 3, 9, 15, 18, 27, 37, 37, 44, 57, 54, 61, 77, 71, 78, 97, 88, 95, 117, 105, 112, 137, 122, 129, 157, 139, 146, 177, 156, 163, 197, 173, 180, 217, 190, 197, 237, 207, 214, 257, 224, 231, 277, 241, 248, 297, 258, 265, 317, 275, 282, 337, 292, 299, 357, 309, 316, 377, 326, 333, 397, 343, 350, 417, 360
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f:=proc(n) local k,r,L; L:=[1,3,9,15,18];
    if n<5 then L[n+1]
    else k:=floor(n/3); r:=n-3*k;
      if r=0 then 20*k-3 elif r=1 then 17*k+3 else 17*k+10; fi;
    fi; end;
    [seq(f(n),n=0..80)];
  • Mathematica
    Join[{1, 3, 9, 15, 18}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {27, 37, 37, 44, 57, 54}, 60]] (* Jean-François Alcover, Apr 28 2018 *)
  • PARI
    Vec(-(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

Formula

For n >= 5, let k=floor(n/3). Then a(3*k) = 20*k-3, a(3*k+1)=17*k+3, a(3*k+2)=17*k+10.
G.f.: -(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2).
a(n) = 2*a(n-3) - a(n-6) for n>10. - Colin Barker, Jan 13 2018

A298015 Coordination sequence of snub-632 tiling with respect to a trivalent node of type short-short-short.

Original entry on oeis.org

1, 3, 6, 15, 21, 18, 33, 48, 30, 51, 72, 42, 69, 96, 54, 87, 120, 66, 105, 144, 78, 123, 168, 90, 141, 192, 102, 159, 216, 114, 177, 240, 126, 195, 264, 138, 213, 288, 150, 231, 312, 162, 249, 336, 174, 267, 360, 186, 285, 384, 198, 303, 408, 210, 321, 432, 222, 339, 456, 234, 357, 480, 246, 375
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Formula

For n >= 6, let k=floor(n/3), so k >= 2. Then a(3*k) = 18*k-3, a(3*k+1)=24*k, a(3*k+2)=12*k+6. [Corrected by N. J. A. Sloane, Apr 01 2020]
a(n) = 2*a(n-3) - a(n-6) for n>=11. [Corrected by N. J. A. Sloane, Apr 01 2020]
G.f.: -(3*x^10-9*x^7-4*x^6-6*x^5-15*x^4-13*x^3-6*x^2-3*x-1)/(x^6-2*x^3+1). [Corrected by N. J. A. Sloane, Apr 01 2020]

Extensions

a(4) corrected by Tom Karzes. I corrected the b-file and the formulas and deleted the programs. - N. J. A. Sloane, Apr 01 2020

A298016 Coordination sequence of snub-632 tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 12, 24, 36, 24, 42, 60, 36, 60, 84, 48, 78, 108, 60, 96, 132, 72, 114, 156, 84, 132, 180, 96, 150, 204, 108, 168, 228, 120, 186, 252, 132, 204, 276, 144, 222, 300, 156, 240, 324, 168, 258, 348, 180, 276, 372, 192, 294, 396, 204, 312, 420, 216, 330, 444, 228, 348, 468, 240
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f:=proc(n) local k,r;
    if n=0 then return(1); fi;
    r:=(n mod 3); k:=(n-r)/3;
    if r=0 then 12*k elif r=1 then 18*k+6 else 24*k+12; fi;
    end;
    [seq(f(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {6, 12, 12, 24, 36, 24}, 60]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 6*x + 12*x^2 + 10*x^3 + 12*x^4 + 12*x^5 + x^6) / ((1 - x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

Formula

For n >= 1, let k=floor(n/3). Then a(3*k) = 12*k, a(3*k+1)=18*k+6, a(3*k+2)=24*k+12.
a(n) = 2*a(n-3) - a(n-6) for n >= 7.
G.f.: -(-x^6-12*x^5-12*x^4-10*x^3-12*x^2-6*x-1)/(x^6-2*x^3+1).

A298022 Coordination sequence for Dual(3^3.4^2) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 7, 12, 17, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 79, 84, 89, 93, 98, 103, 107, 112, 117, 121, 126, 131, 135, 140, 145, 149, 154, 159, 163, 168, 173, 177, 182, 187, 191, 196, 201, 205, 210, 215, 219, 224, 229, 233, 238, 243, 247, 252, 257, 261
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings.

References

  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96.

Crossrefs

See A298023 for partial sums, A298024 for a tetravalent point.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A049347.

Programs

  • PARI
    \\ See Links section.

Formula

Conjectures from Colin Barker, Jan 22 2018: (Start)
G.f.: (1 + 2*x + 4*x^2 + 4*x^3 + 3*x^4 + 2*x^5 - 2*x^8) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>5. (End)
Conjecture: a(n) = 2*(21*n + 3*A049347(n+2)/2)/9 for n > 4. - Stefano Spezia, Nov 24 2024

Extensions

More terms from Rémy Sigrist, Jan 21 2018

A298026 Coordination sequence of Dual(3.6.3.6) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 6, 18, 12, 30, 18, 42, 24, 54, 30, 66, 36, 78, 42, 90, 48, 102, 54, 114, 60, 126, 66, 138, 72, 150, 78, 162, 84, 174, 90, 186, 96, 198, 102, 210, 108, 222, 114, 234, 120, 246, 126, 258, 132, 270, 138, 282, 144, 294, 150, 306, 156, 318, 162, 330, 168, 342, 174, 354, 180, 366, 186, 378, 192, 390
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A298027 (partial sums), A298028 (trivalent point).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 3*n else 6*n; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {6, 6, 18, 12}, 80]] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    Vec((1 + 6*x + 4*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jan 22 2018

Formula

a(0)=1; a(2*k)=6*k, a(2*k+1)=12*k+6.
G.f.: 1 + 6*x*(1+x+x^2)/(1-x^2)^2. - Robert Israel, Jan 21 2018
From Colin Barker, Jan 22 2018: (Start)
a(n) = 3*n for n>0 and even.
a(n) = 6*n for n odd.
a(n) = 2*a(n-2) - a(n-4) for n>4.
(End)
a(n) = 6*A026741(n), n>0. - R. J. Mathar, Jan 29 2018

A298028 Coordination sequence of Dual(3.6.3.6) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177, 360, 183, 372, 189, 384, 195
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A135556 (partial sums), A298026 (trivalent point).
If the initial 1 is changed to 0 we get A165988 (but we need both sequences, just as we have both A008574 and A008586).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 6*n else 3*n; fi; end;
    [seq(f3(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {3, 12, 9, 24}, 80]] (* Jean-François Alcover, Mar 23 2020 *)

Formula

a(0)=1; a(2*k) = 12*k, a(2*k+1) = 6*k+3.
G.f.: 1 + 3*x*(x^2+4*x+1)/(1-x^2)^2. - Robert Israel, Jan 21 2018
a(n) = 3*A022998(n), n>0. - R. J. Mathar, Jan 29 2018

A298029 Coordination sequence of Dual(3.4.6.4) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 6, 12, 18, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489, 501, 507, 519, 525, 537, 543, 555
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the deltoidal trihexagonal tiling, or the mta net.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020
This is one of the Laves tilings.

Crossrefs

Cf. A007310, A008574, A298030 (partial sums), A298031 (for a tetravalent node), A298033 (hexavalent node), A306771.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 6, 12, 18}, LinearRecurrence[{1, 1, -1}, {33, 39, 51}, 60]] (* Jean-François Alcover, Jan 07 2019 *)
    Join[{1,3,6,12,18},Table[If[EvenQ[n],9n-15,9n-12],{n,5,70}]] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    Vec((1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 9*x^5 - 3*x^7) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 5, if n is even then a(n) = 9*n-15, otherwise a(n) = 9*n-12. The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. - N. J. A. Sloane, Jan 24 2018
G.f.: -(3*x^7 - 9*x^5 - 3*x^4 - 4*x^3 - 2*x^2 - 2*x - 1)/((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7. - Colin Barker, Jan 25 2018
a(n) = (3/2)*(6*n - (-1)^n - 9) for n>4. - Bruno Berselli, Jan 25 2018
a(n) = 3*A007310(n-1), n>4. - R. J. Mathar, Jan 29 2018

A298031 Coordination sequence of Dual(3.4.6.4) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 10, 16, 30, 36, 48, 54, 66, 72, 84, 90, 102, 108, 120, 126, 138, 144, 156, 162, 174, 180, 192, 198, 210, 216, 228, 234, 246, 252, 264, 270, 282, 288, 300, 306, 318, 324, 336, 342, 354, 360, 372, 378, 390, 396, 408, 414, 426, 432, 444, 450, 462, 468, 480, 486, 498, 504, 516, 522, 534, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018; extended with formula, Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020

Crossrefs

Cf. A008574, A298032 (partial sums), A298029 (for a trivalent node), A298033 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f4:=proc(n) local L; L:=[1,4,10,16];
    if n<4 then L[n+1] elif (n mod 2) = 0 then 9*n-6 else 9*n-9; fi;
    end;
    [seq(f4(n),n=0..80)];
  • Mathematica
    Join[{1, 4, 10, 16}, LinearRecurrence[{1, 1, -1}, {30, 36, 48}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 3*x + 5*x^2 + 3*x^3 + 8*x^4 - 2*x^6) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 4, a(n) = 9*n-6 if n is even, otherwise a(n) = 9*n-9.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: -(2*x^6 - 8*x^4 - 3*x^3 - 5*x^2 - 3*x - 1) / ((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4. - Colin Barker, Jan 25 2018
a(n) = 6*A007494(n-1), n>3. - R. J. Mathar, Jan 29 2018
Previous Showing 11-20 of 22 results. Next