A298018 Partial sums of A298015.
1, 4, 10, 25, 49, 67, 100, 148, 178, 229, 301, 343, 412, 508, 562, 649, 769, 835, 940, 1084, 1162, 1285, 1453, 1543, 1684, 1876, 1978, 2137, 2353, 2467, 2644, 2884, 3010, 3205, 3469, 3607, 3820, 4108, 4258, 4489, 4801, 4963, 5212, 5548, 5722, 5989, 6349, 6535, 6820, 7204, 7402, 7705, 8113, 8323
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Crossrefs
Cf. A298015.
Programs
-
Mathematica
LinearRecurrence[{1,0,2,-2,0,-1,1},{1,4,10,25,49,67,100,148},60] (* Harvey P. Dale, Apr 30 2023 *)
-
PARI
Vec((1 + 3*x + 6*x^2 + 13*x^3 + 18*x^4 + 6*x^5 + 4*x^6 + 3*x^7) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^50)) \\ Colin Barker, Jan 15 2018
Formula
From Colin Barker, Jan 15 2018: (Start)
G.f.: (1 + 3*x + 6*x^2 + 13*x^3 + 18*x^4 + 6*x^5 + 4*x^6 + 3*x^7) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7.
(End)
Comments