cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A182378 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(7), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 285, 716, 1833, 4740, 12410, 32754, 87176, 233547, 629540, 1705809, 4644231, 12697500, 34848694, 95973026, 265142431, 734606478, 2040683413, 5682634446, 15859800889, 44355531103, 124290064228, 348904212741, 981082979409
Offset: 0

Views

Author

Michael Burkhart, Apr 26 2012

Keywords

Comments

Number of rooted trees where each node has at most 7 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 7$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[ b[i-1, i-1, k, k] + j - 1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n-1, n-1, 7, 7]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 15 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..7} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.338512011286603947719604869750539045616436718225097926729820... - Robert A. Russell, Feb 11 2023

Extensions

More terms from Patrick Devlin, Apr 29 2012

A299039 Number of rooted trees with 2n nodes where each node has at most n children.

Original entry on oeis.org

1, 1, 3, 17, 106, 693, 4690, 32754, 234746, 1719325, 12820920, 97039824, 743680508, 5759507657, 45006692668, 354425763797, 2809931206626, 22409524536076, 179655903886571, 1447023307374888, 11703779855021636, 95020085240320710, 774088021528328920
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2018

Keywords

Examples

			a(2) = 3:
   o     o       o
   |     |      / \
   o     o     o   o
   |    / \    |
   o   o   o   o
   |
   o
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-1$2, n$2)):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[2n - 1, 2n - 1, n, n]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, from Maple *)

Formula

a(n) = A299038(2n,n).
a(n) ~ c * d^n / n^(3/2), where d = A051491^2 = 8.736548423865419449938118272879... and c = A187770 / 2^(3/2) = 0.155536626247883986039760097126... - Vaclav Kotesovec, Feb 02 2018, updated Mar 17 2024

A127119 Triangle read by rows: T(n,k) = number of endofunctions on a set with n elements, where the maximum indegree is k.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 5, 10, 3, 1, 7, 24, 12, 3, 1, 11, 64, 39, 12, 3, 1, 15, 149, 122, 41, 12, 3, 1, 22, 366, 368, 138, 41, 12, 3, 1, 30, 857, 1092, 439, 140, 41, 12, 3, 1, 42, 2050, 3179, 1395, 455, 140, 41, 12, 3, 1, 56, 4828, 9160, 4326, 1467, 457, 140, 41, 12, 3, 1
Offset: 1

Views

Author

Keywords

Comments

The number of endofunctions with indegree <= k is given by the Euler transform of the number of connected endofunctions with indegree <= k. - Andrew Howroyd, Feb 21 2020

Examples

			For n = 3, the 7 endofunctions are (1,2,3) -> (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,3), (1,3,2) and (2,3,1). In the first, node 1 has indegree 3, the next 3 have node 1 with indegree 2 and the final 3 are permutations, each node having indegree 1. So row 3 of the triangle is 3,3,1.
The triangle starts:
1
2 1
3 3 1
5 10 3 1
7 24 12 3 1
		

Crossrefs

Programs

  • PARI
    \\ Here R(n,k) gives column k of A299038 as series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    MSetUptoK(g, k)={my(n=serprec(g,x)); polcoef(if(k==0, 1, exp( sum(i=1, k, (y^i + O(y*y^k))*subst(g + O(x*x^(n\i)), x, x^i)/i )))/(1 - y) + O(y*y^k), k, y) + O(x^n)}
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    R(n,k)={my(p=O(x)); for(n=1, n, p=x*MSetUptoK(p, k)); p}
    F(n)={my(M=Mat(vector(n, k, EulerT(Vec(CIK(x*MSetUptoK(R(n,k), k-1), n)))~))); M-matconcat([vectorv(#M), M[, 1..n-1]])}
    { my(A=F(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Feb 21 2020

Extensions

Terms a(46) and beyond from Andrew Howroyd, Feb 21 2020

A352460 Triangle read by rows: T(n,k), 2 <= k < n is the number of n-element k-ary unlabeled rooted trees where a subtree consisting of h + 1 nodes has exactly min{h,k} subtrees.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 1, 1, 9, 6, 5, 3, 2, 1, 1, 13, 10, 6, 5, 3, 2, 1, 1, 23, 15, 10, 7, 5, 3, 2, 1, 1, 35, 24, 14, 10, 7, 5, 3, 2, 1, 1, 61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1, 98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3

Views

Author

Salah Uddin Mohammad, Mar 17 2022

Keywords

Examples

			Triangle begins:
    1;
    1,  1;
    2,  1,  1;
    2,  2,  1,  1;
    4,  3,  2,  1,  1;
    5,  4,  3,  2,  1,  1;
    9,  6,  5,  3,  2,  1, 1;
   13, 10,  6,  5,  3,  2, 1, 1;
   23, 15, 10,  7,  5,  3, 2, 1, 1;
   35, 24, 14, 10,  7,  5, 3, 2, 1, 1;
   61, 39, 23, 14, 11,  7, 5, 3, 2, 1, 1;
   98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1;
In particular, the rooted trees counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
  ---------
    o   o
     \ /
      o
  ----------------------
    o       |
    |       |
    o   o   |   o  o  o
     \ /    |    \ | /
      o     |      o
  ------------------------------------------------------
    o   o        o   o   |   o         |
     \ /         |   |   |   |         |
      o   o      o   o   |   o  o  o   |   o  o   o  o
       \ /        \ /    |    \ | /    |    \  \ /  /
        o          o     |      o      |        o
		

Crossrefs

Previous Showing 11-14 of 14 results.