cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A299284 Partial sums of A299283.

Original entry on oeis.org

1, 8, 30, 78, 162, 292, 478, 731, 1061, 1478, 1992, 2614, 3354, 4222, 5228, 6383, 7697, 9180, 10842, 12694, 14746, 17008, 19490, 22203, 25157, 28362, 31828, 35566, 39586, 43898, 48512, 53439, 58689, 64272, 70198, 76478, 83122, 90140, 97542, 105339, 113541
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299283.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,1,-3,3,-1},{1,8,30,78,162,292,478},50] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)

A299285 Coordination sequence for "tea" 3D uniform tiling.

Original entry on oeis.org

1, 10, 33, 73, 128, 199, 285, 388, 506, 640, 789, 955, 1136, 1333, 1545, 1774, 2018, 2278, 2553, 2845, 3152, 3475, 3813, 4168, 4538, 4924, 5325, 5743, 6176, 6625, 7089, 7570, 8066, 8578, 9105, 9649, 10208, 10783, 11373, 11980, 12602, 13240, 13893
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

See A299286 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A056594.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,1,-2,1},{1,10,33,73,128,199,285},50] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,-2,1,0,-1,2]^n*[1;10;33;73;128;199])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. (End)
[I suspect Barker's formulas only conjectures. - N. J. A. Sloane, Jun 12 2024]
If the above formulas are true, then a(n) = (31 - 3*(-1)^n + 126*n^2 + 4*A056594(n))/16 for n > 0. - Stefano Spezia, Jun 08 2024

A299286 Partial sums of A299285.

Original entry on oeis.org

1, 11, 44, 117, 245, 444, 729, 1117, 1623, 2263, 3052, 4007, 5143, 6476, 8021, 9795, 11813, 14091, 16644, 19489, 22641, 26116, 29929, 34097, 38635, 43559, 48884, 54627, 60803, 67428, 74517, 82087, 90153, 98731, 107836, 117485, 127693, 138476, 149849
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299285.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)

A299287 Coordination sequence for "tcd" 3D uniform tiling.

Original entry on oeis.org

1, 10, 33, 72, 126, 196, 281, 382, 498, 630, 777, 940, 1118, 1312, 1521, 1746, 1986, 2242, 2513, 2800, 3102, 3420, 3753, 4102, 4466, 4846, 5241, 5652, 6078, 6520, 6977, 7450, 7938, 8442, 8961, 9496, 10046, 10612, 11193, 11790, 12402, 13030, 13673, 14332
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

See A299288 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {1, 10, 33, 72, 126}, 50] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    Vec((1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

G.f.: (x^4 + 8*x^3 + 13*x^2 + 8*x + 1) / ((1 + x)*(1 - x)^3).
From Colin Barker, Feb 11 2018: (Start)
a(n) = (31*n^2 + 8) / 4 for even n>0.
a(n) = (31*n^2 + 9) / 4 for odd n>0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
E.g.f.: ((8 + 31*x + 31*x^2)*cosh(x) + (9 + 31*x + 31*x^2)*sinh(x) - 4)/4. - Stefano Spezia, Jun 08 2024

A299288 Partial sums of A299287.

Original entry on oeis.org

1, 11, 44, 116, 242, 438, 719, 1101, 1599, 2229, 3006, 3946, 5064, 6376, 7897, 9643, 11629, 13871, 16384, 19184, 22286, 25706, 29459, 33561, 38027, 42873, 48114, 53766, 59844, 66364, 73341, 80791, 88729, 97171, 106132, 115628, 125674, 136286, 147479, 159269
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299287.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (62*n^3 + 93*n^2 + 82*n + 24) / 24 for n even.
a(n) = (62*n^3 + 93*n^2 + 82*n + 27) / 24 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)

A299289 Coordination sequence for "tsi" 3D uniform tiling.

Original entry on oeis.org

1, 8, 28, 60, 106, 164, 236, 320, 418, 528, 652, 788, 938, 1100, 1276, 1464, 1666, 1880, 2108, 2348, 2602, 2868, 3148, 3440, 3746, 4064, 4396, 4740, 5098, 5468, 5852, 6248, 6658, 7080, 7516, 7964, 8426, 8900, 9388, 9888, 10402, 10928
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #12.

Crossrefs

See A299290 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^3*(1 + x)).
a(n) = (13*n^2 + 4) / 2 for n>0 and even.
a(n) = (13*n^2 + 3) / 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
Conjectured e.g.f.: ((4 + 13*x + 13*x^2)*cosh(x) + (3 + 13*x + 13*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jun 08 2024

A299290 Partial sums of A299289.

Original entry on oeis.org

1, 9, 37, 97, 203, 367, 603, 923, 1341, 1869, 2521, 3309, 4247, 5347, 6623, 8087, 9753, 11633, 13741, 16089, 18691, 21559, 24707, 28147, 31893, 35957, 40353, 45093, 50191, 55659, 61511, 67759, 74417, 81497, 89013, 96977, 105403, 114303, 123691
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299289.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even.
a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)

A299291 Coordination sequence for "ubt" 3D uniform tiling.

Original entry on oeis.org

1, 5, 14, 29, 56, 85, 130, 181, 226, 299, 382, 445, 538, 635, 708, 845, 962, 1079, 1218, 1363, 1456, 1671, 1808, 1987, 2170, 2365, 2470, 2777, 2920, 3169, 3394, 3641, 3750, 4163, 4298, 4625, 4890, 5191, 5296, 5829, 5942, 6355, 6658, 7015, 7108, 7775, 7852, 8359, 8698, 9113, 9186
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #10.

Crossrefs

See A299292 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,1,1,0,2,2,0,-2,-2,0,-1,-1,0,1,1},{1,5,14,29,56,85,130,181,226,299,382,445,538,635,708,845,962,1079,1218,1363,1456},60] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = -a(n-1) + a(n-3) + a(n-4) + 2*a(n-6) + 2*a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) - a(n-13) + a(n-15) + a(n-16) for n>17. - Colin Barker, Feb 14 2018

A299292 Partial sums of A299291.

Original entry on oeis.org

1, 6, 20, 49, 105, 190, 320, 501, 727, 1026, 1408, 1853, 2391, 3026, 3734, 4579, 5541, 6620, 7838, 9201, 10657, 12328, 14136, 16123, 18293, 20658, 23128, 25905, 28825, 31994, 35388, 39029, 42779, 46942, 51240, 55865, 60755, 65946, 71242, 77071, 83013, 89368, 96026
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299291.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2).
a(n) = a(n-2) + a(n-3) - a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) - a(n-12) + a(n-14) + a(n-15) - a(n-17) for n>17. - Colin Barker, Feb 14 2018

A242941 a(n) is the number of convex uniform tessellations in dimension n.

Original entry on oeis.org

1, 11, 28, 143
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

Terms for n > 4 have not been determined so far. Alfredo Andreini in 1905 gave a value of 25 for a(3), later found to be incorrect. The value 28 for a(3) was given by Norman Johnson in 1991 and later in 1994 independently by Branko Grünbaum. The value for a(4) was given by George Olshevsky in 2006.
Deza and Shtogrin (2000) agree that the value of a(3) is 28, although the authors do not provide a proof. - Felix Fröhlich, Nov 29 2014
From Felix Fröhlich, Feb 03 2019: (Start)
The 11 convex uniform tilings are all illustrated in Kepler, 1619. For an argument that exactly 11 such tilings exist, see Grünbaum, Shephard, 1977.
In dimension 2, the definition of "uniform polytope" usually seems to be equivalent to the regular polygons in order to exclude polygons that alternate two different edge-lengths. Applying this principle retroactively to dimension 1 (as done, as I assume, by Coxeter, see Coxeter, 1973, p. 129) yields a(1) = 1. (End)

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486614809.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, Vol. 4, No. 2 (1994), 49-56.
  • N. W. Johnson, Uniform Polytopes, [To appear, cf. Weiss, Stehle, 2017].

Crossrefs

Cf. A068599.
List of coordination sequences for the 11 uniform 2D tilings: A008458(the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for the 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Extensions

Edited by N. J. A. Sloane, Feb 15 2018
Edited by Felix Fröhlich, Feb 03-10 2019
Previous Showing 41-50 of 50 results.