A320664
Number of non-isomorphic multiset partitions of weight n with all parts of odd size.
Original entry on oeis.org
1, 1, 2, 6, 12, 30, 82, 198, 533, 1459, 4039, 11634, 34095, 102520, 316456, 995709, 3215552, 10591412, 35633438, 122499429, 428988392, 1532929060, 5579867442, 20677066725, 78027003260, 299413756170, 1168536196157, 4635420192861, 18678567555721, 76451691937279, 317625507668759
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions with all parts of odd size:
{{1}} {{1},{1}} {{1,1,1}} {{1},{1,1,1}}
{{1},{2}} {{1,2,2}} {{1},{1,2,2}}
{{1,2,3}} {{1},{2,2,2}}
{{1},{1},{1}} {{1},{2,3,3}}
{{1},{2},{2}} {{1},{2,3,4}}
{{1},{2},{3}} {{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp((A-subst(A,x,-x))/2)))} \\ Andrew Howroyd, Jan 17 2023
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
J(q, t, k, y)={1/prod(j=1, #q, my(s=q[j], g=gcd(s,t)); (1 + O(x*x^k) - y^(s/g)*x^(s*t/g))^g)}
K(q, t, k) = Vec(J(q,t,k,1)-J(q,t,k,-1), -k)/2
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 17 2023
A358834
Number of odd-length twice-partitions of n into odd-length partitions.
Original entry on oeis.org
0, 1, 1, 3, 3, 8, 11, 24, 35, 74, 109, 213, 336, 624, 986, 1812, 2832, 5002, 7996, 13783, 21936, 37528, 59313, 99598, 158356, 262547, 415590, 684372, 1079576, 1759984, 2779452, 4491596, 7069572, 11370357, 17841534, 28509802, 44668402, 70975399, 110907748
Offset: 0
The a(1) = 1 through a(6) = 11 twice-partitions:
(1) (2) (3) (4) (5) (6)
(111) (211) (221) (222)
(1)(1)(1) (2)(1)(1) (311) (321)
(11111) (411)
(2)(2)(1) (21111)
(3)(1)(1) (2)(2)(2)
(111)(1)(1) (3)(2)(1)
(1)(1)(1)(1)(1) (4)(1)(1)
(111)(2)(1)
(211)(1)(1)
(2)(1)(1)(1)(1)
The version for set partitions is
A003712.
If the parts are also odd we get
A279374.
The version for multiset partitions of integer partitions is the odd-length case of
A356932, ranked by
A026424 /\
A356935.
This is the odd-length case of
A358334.
This is the odd-lengths case of
A358824.
For odd sums instead of lengths we have
A358826.
The case of odd sums also is the bisection of
A358827.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Length/@#]&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022
A300797
Number of strict trees of weight 2n + 1 in which all outdegrees and all leaves are odd.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 6, 11, 17, 34, 59, 118, 213, 424, 799, 1606, 3072, 6216, 12172, 24650, 48710, 99333, 198237, 405526, 815267, 1673127, 3387165, 6974702, 14179418, 29285048, 59841630, 123848399, 253927322, 526936694, 1084022437, 2253778793, 4649778115
Offset: 0
The a(7) = 6 strict trees: 15, (11 3 1), (9 5 1), (7 5 3), ((7 3 1) 3 1), ((5 3 1) 5 1).
Cf.
A000009,
A000992,
A032305,
A063834,
A078408,
A089259,
A196545,
A273873,
A279785,
A289501,
A298118,
A300301,
A300352,
A300353,
A300436,
A300439,
A300440,
A300652.
-
a[n_]:=a[n]=If[OddQ[n],1,0]+Sum[Times@@a/@ptn,{ptn,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
Table[a[n],{n,1,60,2}]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))) - prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018
A358825
Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts.
Original entry on oeis.org
1, 1, 1, 4, 4, 11, 20, 35, 56, 113, 207, 326, 602, 985, 1777, 3124, 5115, 8523, 15011, 24519, 41571, 71096, 115650, 191940, 320651, 530167, 865781, 1442059, 2358158, 3833007, 6325067, 10243259, 16603455, 27151086, 43734197, 71032191, 115091799, 184492464
Offset: 0
The a(1) = 1 through a(5) = 11 twice-partitions:
(1) (1)(1) (3) (3)(1) (5)
(21) (21)(1) (32)
(111) (111)(1) (41)
(1)(1)(1) (1)(1)(1)(1) (221)
(311)
(2111)
(11111)
(3)(1)(1)
(21)(1)(1)
(111)(1)(1)
(1)(1)(1)(1)(1)
For odd parts instead of sums we have
A270995.
For distinct instead of odd sums we have
A271619.
Requiring odd length, odd lengths, and odd parts gives
A279374 aerated.
For odd lengths instead of sums we have
A358334.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Times@@Total/@#]&]],{n,0,10}]
A358826
Number of ways to choose a sequence of partitions, one of each part of an odd-length partition of 2n+1 into odd parts.
Original entry on oeis.org
1, 4, 11, 35, 113, 326, 985, 3124, 8523, 24519, 71096, 191940, 530167, 1442059, 3833007, 10243259, 27151086, 71032191, 184492464, 478339983, 1227208513, 3140958369, 8016016201, 20210235189, 50962894061, 127936646350, 319022819270, 794501931062, 1969154638217
Offset: 0
The a(1) = 1 through a(5) = 11 twice-partitions:
(1) (3) (5)
(21) (32)
(111) (41)
(1)(1)(1) (221)
(311)
(2111)
(11111)
(3)(1)(1)
(21)(1)(1)
(111)(1)(1)
(1)(1)(1)(1)(1)
For odd parts instead of length and sums we have
A270995.
Requiring odd lengths and odd parts gives
A279374 aerated.
This is the case of
A358824 with odd sums.
This is the odd-length case (hence odd bisection) of
A358825.
For odd lengths (instead of length) we have
A358827.
For odd lengths instead of sums we have
A358834.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Total/@#]&]],{n,1,15,2}]
A358827
Number of twice-partitions of n into partitions with all odd lengths and sums.
Original entry on oeis.org
1, 1, 1, 3, 3, 7, 11, 19, 27, 51, 83, 128, 208, 324, 542, 856, 1332, 2047, 3371, 5083, 8009, 12545, 19478, 29770, 46038, 70777, 108627, 167847, 255408, 388751, 593475, 901108, 1361840, 2077973, 3125004, 4729056, 7146843, 10732799, 16104511, 24257261, 36305878
Offset: 0
The a(1) = 1 through a(6) = 11 twice-partitions:
(1) (1)(1) (3) (3)(1) (5) (3)(3)
(111) (111)(1) (221) (5)(1)
(1)(1)(1) (1)(1)(1)(1) (311) (111)(3)
(11111) (221)(1)
(3)(1)(1) (3)(111)
(111)(1)(1) (311)(1)
(1)(1)(1)(1)(1) (111)(111)
(11111)(1)
(3)(1)(1)(1)
(111)(1)(1)(1)
(1)(1)(1)(1)(1)(1)
This is the case of
A358334 with odd sums.
This is the case of
A358825 with odd lengths.
The case of odd length is the odd bisection.
For odd parts instead of lengths and sums we have
A270995.
Requiring odd parts also gives
A279374 aerated.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&&OddQ[Times@@Total/@#]&]],{n,0,10}]
A318485
Number of p-trees of weight 2n + 1 in which all outdegrees are odd.
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 107, 336, 1037, 3367, 10924, 36438, 121045, 412789, 1398168, 4831708, 16636297, 58084208, 202101971, 712709423, 2502000811, 8880033929, 31428410158, 112199775788, 399383181020, 1433385148187, 5128572792587, 18481258241133
Offset: 0
The a(4) = 13 p-trees of weight 9 with odd outdegrees:
((((ooo)oo)oo)oo)
(((ooo)(ooo)o)oo)
(((ooo)oo)(ooo)o)
((ooo)(ooo)(ooo))
(((ooooo)oo)oo)
(((ooo)oooo)oo)
((ooooo)(ooo)o)
(((ooo)oo)oooo)
((ooo)(ooo)ooo)
((ooooooo)oo)
((ooooo)oooo)
((ooo)oooooo)
(ooooooooo)
Cf.
A027193,
A063834,
A078408,
A196545,
A279374,
A289501,
A298118,
A300300,
A300301,
A300355,
A300436,
A300647,
A300652,
A300797,
A302243.
-
b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
Table[b[n],{n,1,20,2}]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 27 2018
Comments