cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A352762 Expansion of Product_{k>=1} 1 / (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -2, -7, -11, -43, -65, -259, -146, -1798, 826, -8116, 17593, -35089, 301903, -308464, 3582403, 157367, 28816009, 9388694, 329375419, -61352008, 2991009094, 509592773, 23675224255, 1207374806, 229200996508, -129896994130, 2090952547882, -816324790165, 14079091274800
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 3^(n - k), {k, 0, n}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 3^(n-k), where p(n,k) is the number of partitions of n into k parts.

A370338 Expansion of Product_{n>=1} (1 - 3^(n-1)*x^n) * (1 + 3^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 2, 11, 24, 114, 297, 1224, 3240, 13230, 37017, 138510, 407754, 1469664, 4413366, 15717969, 47239200, 163408266, 511758000, 1719152586, 5348422224, 18083342907, 56672868240, 187301066040, 594207370746, 1947548449296, 6185182455792, 20263641256656, 64084643627283
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 3^n*x^n) * (1 + 3^n*x^n)^2 = Sum_{n>=0} 3^(n*(n+1)/2) * x^(n*(n+1)/2).
In general, for d > 1, if g.f. = Product_{k>=1} (1 - d^(k-1)*x^k) * (1 + d^(k-1)*x^k)^2, then a(n) ~ c^(1/4) * d^(n + 3/2) * exp(2*sqrt(c*n)) / (2 * sqrt((d-1)*Pi) * (d+1) * n^(3/4)), where c = -2*polylog(2, -1/d) - polylog(2, 1/d). - Vaclav Kotesovec, Feb 26 2024

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 24*x^4 + 114*x^5 + 297*x^6 + 1224*x^7 + 3240*x^8 + 13230*x^9 + 37017*x^10 + 138510*x^11 + 407754*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 3*x^2)*(1 + 3*x^2)^2 * (1 - 9*x^3)*(1 + 9*x^3)^2 * (1 - 27*x^4)*(1 + 27*x^4)^2 * ... * (1 - 3^(n-1)*x^n)*(1 + 3^(n-1)*x^n)^2 * ...
Compare A(x) to the series that results from a similar infinite product:
(1 - 3*x)*(1 + 3*x)^2 * (1 - 9*x^2)*(1 + 9*x^2)^2 * (1 - 27*x^3)*(1 + 27*x^3)^2 * (1 - 81*x^4)*(1 + 81*x^4)^2 * ... = 1 + 3*x + 27*x^3 + 729*x^6 + 59049*x^10 + 14348907*x^15 + 10460353203*x^21 + 22876792454961*x^28 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 3^(k-1)*x^k) * (1 + 3^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 3^(n + 3/2) * exp(2*sqrt(c*n)) / (2^(7/2) * sqrt(Pi) * n^(3/4)), where c = -2*polylog(2,-1/3) - polylog(2,1/3) = 0.2518530229985534570173197... - Vaclav Kotesovec, Feb 26 2024

A370711 a(n) = 4^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/2).

Original entry on oeis.org

1, 6, 6, 348, -570, 12084, -31332, 780792, -6111930, 65506884, -599418444, 6707736456, -69508986852, 738378468744, -7878832564872, 85524000547056, -929068361832378, 10158667075255524, -111690827626777788, 1234592278534799592, -13700571880245603276, 152613494540593338264
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(4*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-3, x]/4], {x, 0, nmax}], x] * 4^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 3*(4*x)^k)^(1/2).
a(n) ~ (-1)^(n+1) * c * 12^n / n^(3/2), where c = QPochhammer(-1/3)^(1/2) / (2*sqrt(Pi)) = 0.311283382185276347775502154581850436407169685238...

A370712 a(n) = 3^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/3).

Original entry on oeis.org

1, 3, 0, 99, -270, 2430, -10287, 105462, -750141, 5702481, -42623901, 347424633, -2779077762, 22353287634, -181730796723, 1493711042589, -12321529794261, 102125312638713, -850797139405887, 7120067746384863, -59800770201017934, 503922807927384129, -4259721779079782751
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[(QPochhammer[-3, x]/4)^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]

Formula

G.f.: Product_{k>=1} (1 + 3*(3*x)^k)^(1/3).
a(n) ~ (-1)^(n+1) * c * 9^n / n^(4/3), where c = QPochhammer(-1/3)^(1/3) / (3*Gamma(2/3)) = 0.26286302373105271371291957730496322329245126572...

A300581 Expansion of Product_{k>=1} 1/(1 - 2^(k+1)*x^k).

Original entry on oeis.org

1, 4, 24, 112, 544, 2368, 10624, 44800, 190976, 791552, 3282944, 13414400, 54829056, 222117888, 899383296, 3625123840, 14601027584, 58659700736, 235555782656, 944552017920, 3786334535680, 15166305468416, 60736264994816, 243129089261568, 973133053952000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2^(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361...

A323634 Expansion of Product_{k>=1} 1/(1 - k^(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 12, 80, 723, 8716, 128227, 2251086, 45647542, 1051845574, 27107414480, 772785074811, 24136982014698, 819697939365724, 30068912837398063, 1184872370227462528, 49914074776385885492, 2238476211786621770206, 106476394492364281869654, 5354276181476337307494676
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = n^(n-1). - Seiichi Manyama, Aug 22 2020

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-k^(k-1)*x^k),k=1..100),x=0,21): seq(coeff(a,x,n),n=0..20); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - k^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k - k/d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]
  • PARI
    N=40; x='x+O('x^N); Vec(1/prod(k=1, N, 1-k^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020

Formula

a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-2) + 3*exp(-1)/2)/n^2). - Vaclav Kotesovec, Jan 22 2019

A352786 Expansion of Product_{k>=1} (1 - 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -3, -6, -18, -27, -108, -81, -486, 0, -1458, 8748, -6561, 118098, 118098, 1003833, 1417176, 11691702, 9565938, 105225318, 114791256, 746143164, 1076168025, 7231849128, 2324522934, 58113073350, 45328197213, 334731302496, 146444944842, 3263630199336, -3012581722464
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..A003056(n)} (-1)^k * q(n,k) * 3^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
Previous Showing 11-17 of 17 results.