cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A301716 Coordination sequence for node of type V1 in "kre" 2-D tiling (or net).

Original entry on oeis.org

1, 6, 12, 18, 18, 30, 36, 36, 48, 48, 54, 66, 66, 72, 78, 84, 90, 96, 102, 102, 114, 120, 120, 132, 132, 138, 150, 150, 156, 162, 168, 174, 180, 186, 186, 198, 204, 204, 216, 216, 222, 234, 234, 240, 246, 252, 258, 264, 270, 270, 282, 288, 288, 300, 300, 306
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 3rd tiling.

Crossrefs

Cf. A301718.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,1,0,1,0,0,-1},{1,6,12,18,18,30,36,36,48},100] (* Paolo Xausa, Nov 16 2023 *)
  • PARI
    See Links section.

Formula

G.f.: (x^8+6*x^7+12*x^6+17*x^5+12*x^4+17*x^3+12*x^2+6*x+1) / ((1-x^3)*(1-x^5)). - N. J. A. Sloane, Mar 28 2018

Extensions

More terms from Rémy Sigrist, Mar 28 2018

A301718 Coordination sequence for node of type V2 in "kre" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 11, 17, 23, 28, 33, 39, 45, 51, 56, 61, 67, 73, 79, 84, 89, 95, 101, 107, 112, 117, 123, 129, 135, 140, 145, 151, 157, 163, 168, 173, 179, 185, 191, 196, 201, 207, 213, 219, 224, 229, 235, 241, 247, 252, 257, 263, 269, 275, 280, 285, 291, 297, 303, 308
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 3rd tiling.

Crossrefs

Cf. A301716.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,1,-1},{1,5,11,17,23,28,33},100] (* Paolo Xausa, Nov 16 2023 *)
  • PARI
    \\ See Links section.

Formula

G.f.: (x^4+2*x^3+x^2+2*x+1)*(x+1)^2 / ((1-x)*(1-x^5)). - N. J. A. Sloane, Mar 28 2018
Conjecture: a(n) ~ 28*n/5. - Stefano Spezia, Mar 29 2023

Extensions

More terms from Rémy Sigrist, Mar 28 2018

A301720 Coordination sequence for node of type V1 in "krb" 2-D tiling (or net).

Original entry on oeis.org

1, 6, 9, 18, 21, 24, 36, 36, 39, 54, 51, 54, 72, 66, 69, 90, 81, 84, 108, 96, 99, 126, 111, 114, 144, 126, 129, 162, 141, 144, 180, 156, 159, 198, 171, 174, 216, 186, 189, 234, 201, 204, 252, 216, 219, 270, 231, 234, 288, 246, 249, 306, 261, 264, 324, 276, 279, 342, 291, 294, 360, 306, 309, 378, 321
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 1st row, 2nd tiling.

Crossrefs

Cf. A301722.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1},{1,6,9,18,21,24,36},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(-x^6-6*x^5-9*x^4-16*x^3-9*x^2-6*x-1)/(x^6-2*x^3+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301722 Coordination sequence for node of type V2 in "krb" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 10, 15, 22, 27, 31, 38, 43, 47, 54, 59, 63, 70, 75, 79, 86, 91, 95, 102, 107, 111, 118, 123, 127, 134, 139, 143, 150, 155, 159, 166, 171, 175, 182, 187, 191, 198, 203, 207, 214, 219, 223, 230, 235, 239, 246, 251, 255, 262, 267, 271, 278, 283, 287, 294, 299, 303, 310, 315, 319, 326, 331, 335
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 1st row, 2nd tiling.

Crossrefs

Cf. A301720.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,5,10,15,22,27,31},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: (-x^6+3*x^4+4*x^3+5*x^2+4*x-1)/(x^4-x^3-x+1). - Ray Chandler, Aug 30 2023

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301724 Coordination sequence for node of type V1 in "kra" 2-D tiling (or net).

Original entry on oeis.org

1, 6, 10, 16, 23, 27, 31, 38, 44, 48, 54, 60, 64, 70, 77, 81, 85, 92, 98, 102, 108, 114, 118, 124, 131, 135, 139, 146, 152, 156, 162, 168, 172, 178, 185, 189, 193, 200, 206, 210, 216, 222, 226, 232, 239, 243, 247, 254, 260, 264, 270, 276, 280, 286, 293, 297, 301, 308, 314, 318, 324, 330, 334, 340
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 1st row, 1st tiling.

Crossrefs

Cf. A301726.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^10+4x^9+6x^7+x^6+3x^5+x^4+6x^3+4x+1)/((x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)(x-1)^2),{x,0,100}],x] (* Harvey P. Dale, Aug 08 2021 *)

Formula

G.f.: (x^10+4*x^9+6*x^7+x^6+3*x^5+x^4+6*x^3+4*x+1)/((x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x-1)^2). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301726 Coordination sequence for node of type V2 in "kra" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 11, 16, 21, 27, 33, 38, 43, 49, 54, 59, 65, 70, 75, 81, 87, 92, 97, 103, 108, 113, 119, 124, 129, 135, 141, 146, 151, 157, 162, 167, 173, 178, 183, 189, 195, 200, 205, 211, 216, 221, 227, 232, 237, 243, 249, 254, 259, 265, 270, 275, 281, 286, 291, 297, 303, 308, 313, 319, 324, 329, 335, 340
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 1st row, 1st tiling.

Crossrefs

Cf. A301724.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^2+x+1)(x^8+2x^7+3x^4+2x+1)/((x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)(x-1)^2),{x,0,110}],x] (* Harvey P. Dale, Sep 25 2020 *)

Formula

G.f. = (x^2+x+1)*(x^8+2*x^7+3*x^4+2*x+1)/((x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x-1)^2). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A265035 Coordination sequence of 2-uniform tiling {3.4.6.4, 4.6.12} with respect to a point of type 4.6.12.

Original entry on oeis.org

1, 3, 6, 9, 11, 14, 17, 21, 25, 28, 30, 32, 35, 39, 43, 46, 48, 50, 53, 57, 61, 64, 66, 68, 71, 75, 79, 82, 84, 86, 89, 93, 97, 100, 102, 104, 107, 111, 115, 118, 120, 122, 125, 129, 133, 136, 138, 140, 143, 147, 151, 154, 156, 158, 161, 165, 169, 172, 174, 176
Offset: 0

Views

Author

N. J. A. Sloane, Dec 12 2015

Keywords

Comments

Joseph Myers (Dec 14 2015) reports that "My program for coordination sequences requires describing the tiling structure under translation, listing all edges in the form: (class1, 0, 0) has an edge to (class2, x, y). The present tiling has 18 orbits of vertices under translation and 30 orbits of edges under translation (each of which is described in both directions). So in principle it could generate the other 19 2-uniform tilings, but without a cross check with hand-computed terms there's a risk of e.g. missing some edges, and a fair amount of work producing all the descriptions of translation classes of edges."
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See page 67, 4th row, 3rd tiling.
  • Otto Krötenheerdt, Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene, I, II, III, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Natur. Reihe, 18 (1969), 273-290; 19 (1970), 19-38 and 97-122. [Includes classification of 2-uniform tilings]
  • Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166.

Crossrefs

See A265036 for the other type of point.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{3,-4,3,-1},{1,3,6,9,11,14,17,21,25},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

Based on the b-file, the g.f. appears to be (1+x^2+2*x^5-2*x^6+2*x^7-x^8)/(1-3*x+4*x^2-3*x^3+x^4). This matches the first 1000 terms, so is probably correct. - N. J. A. Sloane, Dec 14 2015
Conjectured g.f. is equivalent to a(n) = 3*n - A010892(n+1) for n >= 5. - R. J. Mathar, Oct 09 2020

Extensions

Extended by Joseph Myers, Dec 13 2015
b-file extended by Joseph Myers, Dec 18 2015
Previous Showing 31-37 of 37 results.