A301725 Partial sums of A301724.
1, 7, 17, 33, 56, 83, 114, 152, 196, 244, 298, 358, 422, 492, 569, 650, 735, 827, 925, 1027, 1135, 1249, 1367, 1491, 1622, 1757, 1896, 2042, 2194, 2350, 2512, 2680, 2852, 3030, 3215, 3404, 3597, 3797, 4003, 4213, 4429, 4651, 4877, 5109, 5348, 5591, 5838, 6092, 6352
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -4, 4, -3, 1).
Crossrefs
Cf. A301724.
Programs
-
Mathematica
Accumulate[CoefficientList[Series[(x^10+4x^9+6x^7+x^6+3x^5+x^4+6x^3+4x+1)/ ((x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)(x-1)^2),{x,0,100}],x]] (* Harvey P. Dale, May 05 2022 *)
Formula
From Colin Barker, Apr 06 2018: (Start)
G.f.: (1 + 4*x + 6*x^3 + x^4 + 3*x^5 + x^6 + 6*x^7 + 4*x^9 + x^10) / ((1 - x)^3*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 4*a(n-9) - 3*a(n-10) + a(n-11) for n>10.
(End)
Comments