cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A365417 Partial sums of A265036.

Original entry on oeis.org

1, 5, 11, 18, 28, 42, 62, 86, 110, 133, 159, 193, 235, 279, 319, 356, 398, 452, 516, 580, 636, 687, 745, 819, 905, 989, 1061, 1126, 1200, 1294, 1402, 1506, 1594, 1673, 1763, 1877, 2007, 2131, 2235, 2328, 2434, 2568, 2720, 2864, 2984, 3091, 3213, 3367, 3541, 3705, 3841, 3962, 4100, 4274, 4470, 4654
Offset: 0

Views

Author

Ray Chandler, Sep 03 2023

Keywords

Crossrefs

Cf. A265036.

Programs

  • Mathematica
    Join[{1,5,11},LinearRecurrence[{5, -12, 18, -18, 12, -5, 1},{18, 28, 42, 62, 86, 110, 133},50]]

Formula

G.f.: (2*x^9 - 6*x^8 + 8*x^7 - 7*x^6 + 2*x^5 + 2*x^4 - 5*x^3 + 2*x^2 - 1)/((x - 1)^3*(x^2 - x + 1)^2).
a(n) = 5*a(n-1) - 12*a(n-2) + 18*a(n-3) - 18*a(n-4) + 12*a(n-5) - 5*a(n-6) + a(n-7) for n > 10.

A008574 a(0) = 1, thereafter a(n) = 4n.

Original entry on oeis.org

1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Views

Author

N. J. A. Sloane; entry revised Aug 24 2014

Keywords

Comments

Number of squares on the perimeter of an (n+1) X (n+1) board. - Jon Perry, Jul 27 2003
Coordination sequence for square lattice (or equivalently the planar net 4.4.4.4).
Apparently also the coordination sequence for the planar net 3.4.6.4. - Darrah Chavey, Nov 23 2014
From N. J. A. Sloane, Nov 26 2014: (Start)
I confirm that this is indeed the coordination sequence for the planar net 3.4.6.4. The points at graph distance n from a fixed point in this net essentially lie on a hexagon (see illustration in link).
If n = 3k, k >= 1, there are 2k + 1 nodes on each edge of the hexagon. This counts the corners of the hexagon twice, so the number of points in the shell is 6(2k + 1) - 6 = 4n. If n = 3k + 1, the numbers of points on the six edges of the hexagon are 2k + 2 (4 times) and 2k + 1 (twice), for a total of 12k + 10 - 6 = 4n. If n = 3k + 2 the numbers are 2k + 2 (4 times) and 2k + 3 twice, and again we get 4n points.
The illustration shows shells 0 through 12, as well as the hexagons formed by shells 9 (green, 36 points), 10 (black, 40 points), 11 (red, 44 points), and 12 (blue, 48 points).
It is clear from the net that this period-3 structure continues forever, and establishes the theorem.
In contrast, for the 4.4.4.4 planar net, the successive shells are diamonds instead of hexagons, and again the n-th shell (n > 0) contains 4n points.
Of course the two nets are very different, since 4.4.4.4 has the symmetry of the square, while 3.4.6.4 has only mirror symmetry (with respect to a point), and has the symmetry of a regular hexagon with respect to the center of any of the 12-gons. (End)
Also the coordination sequence for a 6.6.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6}, see A265045, A265046. - N. J. A. Sloane, Dec 27 2015
Also the coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_4].
Susceptibility series H_1 for 2-dimensional Ising model (divided by 2).
Also the Engel expansion of exp^(1/4); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
This sequence differs from A008586, multiples of 4, only in its initial term. - Alonso del Arte, Apr 14 2011
Number of 2 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00,0), (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2 and j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Central terms of the triangle in A118013. - Reinhard Zumkeller, Apr 10 2006
Also the coordination sequence for the htb net. - N. J. A. Sloane, Mar 31 2018
This is almost certainly also the coordination sequence for Dual(3.3.4.3.4) with respect to a tetravalent node. - Tom Karzes, Apr 01 2020
Minimal number of segments (equivalently, corners) in a rook circuit of a 2n X 2n board (maximal number is A085622). - Ruediger Jehn, Jan 02 2021

Examples

			From _Omar E. Pol_, Aug 20 2011 (Start):
Illustration of initial terms as perimeters of squares (cf. Perry's comment above):
.                                         o o o o o o
.                             o o o o o   o         o
.                   o o o o   o       o   o         o
.           o o o   o     o   o       o   o         o
.     o o   o   o   o     o   o       o   o         o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    4      8        12         16           20
(End)
		

Crossrefs

Cf. A001844 (partial sums), A008586, A054275, A054410, A054389, A054764.
Convolution square of A040000.
Row sums of A130323 and A131032.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
See also A265045, A265046.

Programs

  • Haskell
    a008574 0 = 1; a008574 n = 4 * n
    a008574_list = 1 : [4, 8 ..]  -- Reinhard Zumkeller, Apr 16 2015
  • Mathematica
    f[0] = 1; f[n_] := 4 n; Array[f, 59, 0] (* or *)
    CoefficientList[ Series[(1 + x)^2/(1 - x)^2, {x, 0, 58}], x] (* Robert G. Wilson v, Jan 02 2011 *)
    Join[{1},Range[4,232,4]] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := 4 n + Boole[n == 0]; (* Michael Somos, Jan 07 2019 *)
  • PARI
    {a(n) = 4*n + !n}; /* Michael Somos, Apr 16 2007 */
    

Formula

Binomial transform is A000337 (dropping the 0 there). - Paul Barry, Jul 21 2003
Euler transform of length 2 sequence [4, -2]. - Michael Somos, Apr 16 2007
G.f.: ((1 + x) / (1 - x))^2. E.g.f.: 1 + 4*x*exp(x). - Michael Somos, Apr 16 2007
a(-n) = -a(n) unless n = 0. - Michael Somos, Apr 16 2007
G.f.: exp(4*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = a(n-1) + 4, n > 1. - Vincenzo Librandi, Dec 31 2010
a(n) = A005408(n-1) + A005408(n), n > 1. - Ivan N. Ianakiev, Jul 16 2012
a(n) = 4*n = A008586(n), n >= 1. - Tom Karzes, Apr 01 2020

A298024 Expansion of (x^4+3*x^3+6*x^2+3*x+1)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 4, 10, 14, 18, 24, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 74, 80, 84, 88, 94, 98, 102, 108, 112, 116, 122, 126, 130, 136, 140, 144, 150, 154, 158, 164, 168, 172, 178, 182, 186, 192, 196, 200, 206, 210, 214, 220, 224, 228, 234, 238, 242, 248, 252, 256, 262
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Coordination sequence for Dual(3^3.4^2) tiling with respect to a tetravalent node. This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings. (The identification of this coordination sequence with the g.f. in the definition was first conjectured by Colin Barker, Jan 22 2018.)
Also, coordination sequence for a tetravalent node in the "krl" 2-D tiling (or net).
Both of these identifications are easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.
For n>0, this is twice A047386 (numbers congruent to 0 or +-2 mod 7).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling. (For the krl tiling.)
  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96. (For the Dual(3^3.4^2) tiling.)

Crossrefs

Cf. A301298.
See A298025 for partial sums, A298022 for a trivalent node.
See also A047486.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^4+3x^3+6x^2+3x+1)/((1-x)(1-x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1},{1,4,10,14,18},80] (* Harvey P. Dale, Oct 03 2018 *)
  • PARI
    See Links section.

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (Conjectured, correctly, by Colin Barker, Jan 22 2018.)

Extensions

More terms from Rémy Sigrist, Jan 21 2018
Entry revised by N. J. A. Sloane, Mar 25 2018

A219529 Coordination sequence for 3.3.4.3.4 Archimedean tiling.

Original entry on oeis.org

1, 5, 11, 16, 21, 27, 32, 37, 43, 48, 53, 59, 64, 69, 75, 80, 85, 91, 96, 101, 107, 112, 117, 123, 128, 133, 139, 144, 149, 155, 160, 165, 171, 176, 181, 187, 192, 197, 203, 208, 213, 219, 224, 229, 235, 240, 245, 251, 256, 261, 267, 272, 277, 283, 288, 293, 299
Offset: 0

Views

Author

Allan C. Wechsler, Nov 21 2012

Keywords

Comments

a(n) is the number of vertices of the 3.3.4.3.4 tiling (which has three triangles and two squares, in the given cyclic order, meeting at each vertex) whose shortest path connecting them to a given origin vertex contains n edges.
This is the dual tiling to the Cairo tiling (cf. A296368). - N. J. A. Sloane, Nov 02 2018
First few terms provided by Allan C. Wechsler; Fred Lunnon and Fred Helenius gave the next few; Fred Lunnon suggested that the recurrence was a(n+3) = a(n) + 16 for n > 1. [This conjecture is true - see the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 31 2017]
Appears also to be coordination sequence for node of type V2 in "krd" 2-D tiling (or net). This should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 25 2018
Appears also to be coordination sequence for node of type V1 in "krj" 2-D tiling (or net). This also should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 26 2018
First differences of A301696. - Klaus Purath, May 23 2020

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 2nd tiling, also 2nd row, third tiling.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Haskell
    -- Very slow, could certainly be accelerated.  SST stands for Snub Square Tiling.
    setUnion [] l2 = l2
    setUnion (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setUnion rst l2
    setDifference [] l2 = []
    setDifference (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setDifference rst l2
    adjust k = (if (even k) then 1 else -1)
    weirdAdjacent (x,y) = (x+(adjust y),y+(adjust x))
    sstAdjacents (x,y) = [(x+1,y),(x-1,y),(x,y+1),(x,y-1),(weirdAdjacent (x,y))]
    sstNeighbors core = foldl setUnion core (map sstAdjacents core)
    sstGlob n core = if (n == 0) then core else (sstGlob (n-1) (sstNeighbors core))
    sstHalo core = setDifference (sstNeighbors core) core
    origin = [(0,0)]
    a219529 n = length (sstHalo (sstGlob (n-1) origin))
    -- Allan C. Wechsler, Nov 30 2012
    
  • Maple
    A219529:= n -> `if`(n=0, 1, (16*n +1 - `mod`(n+1,3))/3);
    seq(A219529(n), n = 0..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Join[{1}, LinearRecurrence[{1,0,1,-1}, {5,11,16,21}, 60]] (* Jean-François Alcover, Dec 13 2018 *)
    Table[If[n==0, 1, (16*n +1 - Mod[n+1, 3])/3], {n, 0, 60}] (* G. C. Greubel, May 27 2020 *)
    CoefficientList[Series[(x+1)^4/((x^2+x+1)(x-1)^2),{x,0,70}],x] (* Harvey P. Dale, Jul 03 2021 *)
  • Sage
    [1]+[(16*n+1 -(n+1)%3)/3 for n in (1..60)] # G. C. Greubel, May 27 2020

Formula

Conjectured to be a(n) = floor((16n+1)/3) for n>0; a(0) = 1; this is a consequence of the suggested recurrence due to Lunnon (see comments). [This conjecture is true - see the CGS-NJAS link in A296368 for a proof. - N. J. A. Sloane, Dec 31 2017]
G.f.: (x+1)^4/((x^2+x+1)*(x-1)^2). - N. J. A. Sloane, Feb 07 2018
From G. C. Greubel, May 27 2020: (Start)
a(n) = (16*n - ChebyshevU(n-1, -1/2))/3 for n>0 with a(0)=1.
a(n) = (A008598(n) - A049347(n-1))/3 for n >0 with a(0)=1. (End)

Extensions

Corrected attributions and epistemological status in Comments; provided slow Haskell code - Allan C. Wechsler, Nov 30 2012
Extended by Joseph Myers, Dec 04 2014

A296910 a(0)=1, a(1)=4; thereafter a(n) = 4*n-2*(-1)^n.

Original entry on oeis.org

1, 4, 6, 14, 14, 22, 22, 30, 30, 38, 38, 46, 46, 54, 54, 62, 62, 70, 70, 78, 78, 86, 86, 94, 94, 102, 102, 110, 110, 118, 118, 126, 126, 134, 134, 142, 142, 150, 150, 158, 158, 166, 166, 174, 174, 182, 182, 190, 190, 198, 198, 206, 206, 214, 214, 222, 222, 230, 230, 238, 238
Offset: 0

Views

Author

N. J. A. Sloane, Dec 22 2017

Keywords

Comments

Coordination sequence for the bew tiling with respect to a point where two hexagons meet at only a single point. The coordination sequence for the other type of point can be shown to be A008574.
Notes: There is one point on the positive x-axis at edge-distance n from the origin iff n is even; there is one point on the positive y-axis at edge-distance n from the origin iff n>1 is odd; and the number of points inside the first quadrant at distance n from 0 is n if n is odd, and n-1 if n is even.
Then a(n) = 2*(number on positive x-axis + number on positive y-axis) + 4*(number in interior of first quadrant).

Crossrefs

Apart from first two terms, same as A168384.
Cf. A008574. See A296911 for partial sums.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    {1, 4}~Join~Array[4 # - 2 (-1)^# &, 59, 2] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 4, 6, 14, 14}, 61] (* or *)
    CoefficientList[Series[(1 + 3 x + x^2 + 5 x^3 - 2 x^4)/((1 - x)^2*(1 + x)), {x, 0, 60}], x] (* Michael De Vlieger, Dec 23 2017 *)
  • PARI
    Vec((1 + 3*x + x^2 + 5*x^3 - 2*x^4) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Dec 23 2017

Formula

From Colin Barker, Dec 23 2017: (Start)
G.f.: (1 + 3*x + x^2 + 5*x^3 - 2*x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
(End)

A301287 Coordination sequence for node of type 3.12.12 in "cph" 2-D tiling (or net).

Original entry on oeis.org

1, 3, 6, 7, 8, 15, 18, 17, 20, 25, 28, 29, 30, 35, 40, 39, 40, 47, 50, 49, 52, 57, 60, 61, 62, 67, 72, 71, 72, 79, 82, 81, 84, 89, 92, 93, 94, 99, 104, 103, 104, 111, 114, 113, 116, 121, 124, 125, 126, 131, 136, 135, 136, 143, 146, 145, 148, 153, 156, 157, 158
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.

Crossrefs

Cf. A301289.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    Join[{1, 3, 6}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {7, 8, 15, 18, 17, 20}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    See Links section.

Formula

G.f. = -(2*x^8-2*x^7-x^6-4*x^5-2*x^4-2*x^3-4*x^2-2*x-1) / ((x^2+1)*(x^2+x+1)*(x-1)^2). N. J. A. Sloane, Mar 28 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Equivalent conjecture: 3*a(n) = 8*n+2*A057078(n+1)+3*A228826(n+2). - R. J. Mathar, Mar 31 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Theorem: G.f. = (1+2*x+4*x^2+2*x^3+2*x^4+4*x^5+1*x^6+2*x^7-2*x^8) / ((1-x)*(1+x^2)*(1-x^3)).
Proof. This follows by applying the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the links, and the details of the proof (by calculating the generating function) are on the next two scanned pages. - N. J. A. Sloane, Apr 05 2018

Extensions

More terms from Rémy Sigrist, Mar 27 2018

A301289 Coordination sequence for a tetravalent node of type 3.4.3.12 in "cph" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 5, 6, 12, 14, 15, 18, 21, 26, 28, 26, 31, 38, 37, 38, 44, 46, 47, 50, 53, 58, 60, 58, 63, 70, 69, 70, 76, 78, 79, 82, 85, 90, 92, 90, 95, 102, 101, 102, 108, 110, 111, 114, 117, 122, 124, 122, 127, 134, 133, 134, 140, 142, 143, 146, 149, 154, 156, 154
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.

Crossrefs

Cf. A301287.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    Join[{1, 4}, LinearRecurrence[{2, -3, 4, -4, 4, -3, 2, -1}, {5, 6, 12, 14, 15, 18, 21, 26}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

Theorem: G.f. = (1+2*x+4*x^3+3*x^4+6*x^6-4*x^7+6*x^8-2*x^9) / ((1-x)^2*(1+x^2)*(1+x^2+x^4)).
The proof uses the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the first scan. (Not yet added.) The trunks are blue, the branches are red, and the twigs are green. There is mirror symmetry about the Y-axis, and quadrants I and II are essentially identical, as are quadrants III and IV. The counts of the various classes of nodes are given in the second scan, and the corresponding generating functions are in the third scan. Adding up the different terms gives the g.f. stated above. - N. J. A. Sloane, Apr 07 2018
E.g.f.: (6*(3 + (4*exp(x) - 3)*x + 3*sin(x)) - 9*cos(sqrt(3)*x/2)*cosh(x/2) + sqrt(3)*sin(sqrt(3)*x/2)*(8*cosh(x/2) - 5*sinh(x/2)))/9. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 27 2018

A301291 Expansion of (x^4+3*x^3+x^2+3*x+1)/((x^2+1)*(x-1)^2).

Original entry on oeis.org

1, 5, 9, 13, 18, 23, 27, 31, 36, 41, 45, 49, 54, 59, 63, 67, 72, 77, 81, 85, 90, 95, 99, 103, 108, 113, 117, 121, 126, 131, 135, 139, 144, 149, 153, 157, 162, 167, 171, 175, 180, 185, 189, 193, 198, 203, 207, 211, 216, 221, 225, 229, 234, 239, 243, 247, 252
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Appears to be coordination sequence for node of type 3^3.4^2 in "krm" 2-D tiling (or net).
Also appears to be coordination sequence for pentavalent node in "krk" 2-D tiling (or net).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, row 3, first tiling; also p. 66, row 3, first tiling.

Crossrefs

Cf. A301293.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Maple
    f:=proc(n) if n=0 then 1
    elif (n mod 2) = 0 then 9*n/2
    elif (n mod 4) = 1 then 18*(n-1)/4+5
    else 18*(n-3)/4+13; fi; end;
    s1:=[seq(f(n),n=0..60)];
  • Mathematica
    Join[{1}, LinearRecurrence[{2, -2, 2, -1}, {5, 9, 13, 18}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((x^4+3*x^3+x^2+3*x+1)/((x^2+1)*(x-1)^2) + O(x^60)) \\ Colin Barker, Mar 23 2018

Formula

For explicit formula for a(n) see Maple code.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4. - Colin Barker, Mar 23 2018
E.g.f.: (2 + 9*x*exp(x) + sin(x))/2. - Stefano Spezia, Jan 31 2023

A301293 Expansion of (x^2+x+1)^2 / ((x^2+1)*(x-1)^2).

Original entry on oeis.org

1, 4, 9, 14, 18, 22, 27, 32, 36, 40, 45, 50, 54, 58, 63, 68, 72, 76, 81, 86, 90, 94, 99, 104, 108, 112, 117, 122, 126, 130, 135, 140, 144, 148, 153, 158, 162, 166, 171, 176, 180, 184, 189, 194, 198, 202, 207, 212, 216, 220, 225, 230, 234, 238, 243, 248, 252
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Appears to be coordination sequence for node of type 4^4 in "krm" 2-D tiling (or net).
Also appears to be coordination sequence for tetravalent node in "krk" 2-D tiling (or net).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, row 3, first tiling; also p. 66, row 3, first tiling.

Crossrefs

Cf. A301291.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Maple
    f:=proc(n) if n=0 then 1
    elif (n mod 2) = 0 then 9*n/2
    elif (n mod 4) = 1 then 18*(n-1)/4+4
    else 18*(n-3)/4+14; fi; end;
    s1:=[seq(f(n),n=0..60)];
  • Mathematica
    Join[{1}, LinearRecurrence[{2, -2, 2, -1}, {4, 9, 14, 18}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec((x^2+x+1)^2 / ((x^2+1)*(x-1)^2) + O(x^60)) \\ Colin Barker, Mar 23 2018

Formula

For explicit formula for a(n) see Maple code.
a(n) = 9*n/2 + (1 - (-1)^n)*i^(n*(n + 1))/4 for n>0, a(0)=1 and i=sqrt(-1). Therefore, for even n>0 a(n) = 9*n/2, otherwise a(n) = 9*n/2 - (-1)^((n-1)/2)/2. - Bruno Berselli, Mar 23 2018
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4. - Colin Barker, Mar 23 2018

A301298 Expansion of (1 + 4*x + 4*x^2 + 4*x^3 + x^4)/((1 - x)*(1 - x^3)).

Original entry on oeis.org

1, 5, 9, 14, 19, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 79, 84, 89, 93, 98, 103, 107, 112, 117, 121, 126, 131, 135, 140, 145, 149, 154, 159, 163, 168, 173, 177, 182, 187, 191, 196, 201, 205, 210, 215, 219, 224, 229, 233, 238, 243, 247, 252, 257, 261
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2018

Keywords

Comments

Coordination sequence for pentavalent node in the "krl" 2-D tiling (or net). (This is easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.)
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling.

Crossrefs

Cf. A298024.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Magma
    I:=[1,5,9,14,19]; [n le 5 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Mar 26 2018
    
  • Magma
    [n eq 0 select 1 else 5*n-Floor((n+1)/3): n in [0..60]]; // Bruno Berselli, Mar 26 2018
    
  • Mathematica
    CoefficientList[Series[(x^4 + 4 x^3 + 4 x^2 + 4 x + 1) / ((1 -x) (1 - x^3)), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 26 2018 *)
    LinearRecurrence[{1,0,1,-1},{1,5,9,14,19},60] (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    lista(nn) = {x='x+O('x^nn); Vec((x^4+4*x^3+4*x^2+4*x+1)/((1-x)*(1-x^3)))} \\ Altug Alkan, Mar 26 2018

Formula

G.f.: (1 + 4*x + 4*x^2 + 4*x^3 + x^4)/((1 - x)*(1 - x^3)).
a(n) = 5*n - floor((n + 1)/3) for n>0, a(0)=1. - Bruno Berselli, Mar 26 2018
Showing 1-10 of 37 results. Next