A301292 Partial sums of A301291.
1, 6, 15, 28, 46, 69, 96, 127, 163, 204, 249, 298, 352, 411, 474, 541, 613, 690, 771, 856, 946, 1041, 1140, 1243, 1351, 1464, 1581, 1702, 1828, 1959, 2094, 2233, 2377, 2526, 2679, 2836, 2998, 3165, 3336, 3511, 3691, 3876, 4065, 4258, 4456, 4659
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Programs
-
PARI
Vec((1 + 3*x + x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 23 2018
Formula
From Colin Barker, Mar 23 2018: (Start)
G.f.: (1 + 3*x + x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n > 4.
(End)
From Stefano Spezia, Jan 30 2023: (Start)
a(n) = (5 + 9*n*(1 + n) - A087960(n))/4.
E.g.f.: (exp(x)*(5 + 18*x + 9*x^2) - cos(x) + sin(x))/4. (End)
Comments