A301727 Partial sums of A301726.
1, 6, 17, 33, 54, 81, 114, 152, 195, 244, 298, 357, 422, 492, 567, 648, 735, 827, 924, 1027, 1135, 1248, 1367, 1491, 1620, 1755, 1896, 2042, 2193, 2350, 2512, 2679, 2852, 3030, 3213, 3402, 3597, 3797, 4002, 4213, 4429, 4650, 4877, 5109, 5346, 5589, 5838, 6092, 6351, 6616, 6886, 7161, 7442, 7728, 8019, 8316, 8619, 8927
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -4, 4, -3, 1).
Crossrefs
Cf. A301726.
Programs
-
Mathematica
Accumulate[CoefficientList[Series[(x^2+x+1)(x^8+2x^7+3x^4+2x+1)/ ((x^4+ x^3+x^2+x+1)(x^4-x^3+x^2-x+1)(x-1)^2),{x,0,110}],x]] (* Harvey P. Dale, Sep 25 2020 *)
Formula
From Colin Barker, Apr 09 2018: (Start)
G.f.: (1 + x + x^2)*(1 + 2*x + 3*x^4 + 2*x^7 + x^8) / ((1 - x)^3*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 4*a(n-9) - 3*a(n-10) + a(n-11) for n>10.
(End)
Comments