cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435
Offset: 0

Views

Author

Liam Naughton, Nov 26 2012

Keywords

Comments

a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.

Examples

			From _Gus Wiseman_, Dec 03 2018: (Start)
The a(12) = 14 connected integer partitions of 12:
  (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)
        (8,4)   (6,3,3)  (4,4,2,2)
        (9,3)   (6,4,2)  (6,2,2,2)
        (10,2)  (8,2,2)
(End)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]==1&]],{n,10}]

Formula

For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018

Extensions

More terms from Gus Wiseman, Dec 03 2018

A328514 MM-numbers of connected sets of sets.

Original entry on oeis.org

1, 2, 3, 5, 11, 13, 17, 29, 31, 39, 41, 43, 47, 59, 65, 67, 73, 79, 83, 87, 101, 109, 113, 127, 129, 137, 139, 149, 157, 163, 167, 179, 181, 191, 195, 199, 211, 233, 235, 237, 241, 257, 269, 271, 277, 283, 293, 303, 313, 317, 319, 331, 339, 347, 349, 353, 365
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence all connected set of sets together with their MM-numbers begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  29: {{1,3}}
  31: {{5}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  59: {{7}}
  65: {{2},{1,2}}
  67: {{8}}
  73: {{2,4}}
  79: {{1,5}}
  83: {{9}}
  87: {{1},{1,3}}
		

Crossrefs

The not-necessarily-connected case is A302494.
BII-numbers of connected set-systems are A326749.
MM-numbers of connected sets of multisets are A328513.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[1000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&]

Formula

Intersection of A302494 and A305078.

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime (A006881).

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}              55: {{2},{3}}      137: {{2,5}}
     3: {{1}}           59: {{7}}          139: {{1,7}}
     5: {{2}}           65: {{2},{1,2}}    141: {{1},{2,3}}
    11: {{3}}           67: {{8}}          143: {{3},{1,2}}
    13: {{1,2}}         73: {{2,4}}        145: {{2},{1,3}}
    15: {{1},{2}}       79: {{1,5}}        149: {{3,4}}
    17: {{4}}           83: {{9}}          155: {{2},{5}}
    29: {{1,3}}         85: {{2},{4}}      157: {{12}}
    31: {{5}}           87: {{1},{1,3}}    163: {{1,8}}
    33: {{1},{3}}       93: {{1},{5}}      165: {{1},{2},{3}}
    39: {{1},{1,2}}    101: {{1,6}}        167: {{2,6}}
    41: {{6}}          109: {{10}}         177: {{1},{7}}
    43: {{1,4}}        123: {{1},{6}}      179: {{13}}
    47: {{2,3}}        127: {{11}}         187: {{3},{4}}
    51: {{1},{4}}      129: {{1},{1,4}}    191: {{14}}
		

Crossrefs

The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A371452 Number of connected components of the prime indices of the binary indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The prime indices of binary indices of 281492156579880 are {{1,1},{1,2},{3,4},{4,4}}, with 2 connected components {{1,1},{1,2}} and {{3,4},{4,4}}, so a(281492156579880) = 2.
		

Crossrefs

Positions of first appearances are A080355, opposite A325782.
For prime indices of prime indices we have A305079, ones A305078.
For binary indices of binary indices we have A326753, ones A326749.
Positions of ones are A371291.
For binary indices of prime indices we have A371451, ones A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[csm[prix/@bix[n]]],{n,100}]

A305193 Number of connected factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 10, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S such that G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(72) = 10 factorizations:
(72),
(2*2*18), (2*3*12), (2*6*6), (3*4*6),
(2*36), (3*24), (4*18), (6*12),
(2*2*3*6).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[zsm[#]]==1&]],{n,100}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305193aux(n, m, facs) = if(1==n, is_connected(Set(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A305193aux(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018
    A305193(n) = if(1==n,0,A305193aux(n, n, List([]))); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A322336 Heinz numbers of 2-edge-connected integer partitions.

Original entry on oeis.org

9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.

Examples

			The sequence of all 2-edge-connected integer partitions begins: (2,2), (4,2), (3,3), (2,2,2), (6,2), (4,4), (8,2), (4,2,2), (6,3), (2,2,2,2), (10,2), (6,4), (12,2), (9,3), (6,2,2), (5,5), (3,3,3), (14,2), (8,4), (4,4,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Select[Range[100],twoedQ[primeMS/@primeMS[#]]&]

A322387 Number of 2-vertex-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The a(14) = 10 2-vertex-connected integer partitions:
  (14)  (8,6)   (6,4,4)   (6,3,3,2)  (6,2,2,2,2)
        (10,4)  (6,6,2)   (6,4,2,2)
        (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]

Extensions

a(41)-a(42) from Jinyuan Wang, Jun 20 2020

A322390 Number of integer partitions of n with vertex-connectivity 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 3, 11, 1, 14, 2, 18, 7, 21, 6, 35, 14, 43, 28, 65, 42, 96, 70, 141, 120, 205, 187, 315, 286, 445, 445, 657
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
The a(18) = 14 integer partitions:
  (9,9), (16,2),
  (8,8,2), (10,6,2),
  (8,4,4,2), (9,3,3,3),
  (4,4,4,4,2), (8,4,2,2,2),
  (3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
  (4,4,2,2,2,2,2),
  (4,2,2,2,2,2,2,2),
  (2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]

A340020 MM-numbers of labeled graphs with loops, without isolated vertices.

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a loop is an edge with two equal vertices, distinguished from a half-loop, which has only one vertex.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are semiprimes, where a semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
      1: {}              161: {{1,1},{2,2}}    347: {{2,9}}
      7: {{1,1}}         163: {{1,8}}          373: {{1,12}}
     13: {{1,2}}         167: {{2,6}}          377: {{1,2},{1,3}}
     23: {{2,2}}         199: {{1,9}}          389: {{4,5}}
     29: {{1,3}}         203: {{1,1},{1,3}}    421: {{1,13}}
     43: {{1,4}}         227: {{4,4}}          439: {{3,7}}
     47: {{2,3}}         233: {{2,7}}          443: {{1,14}}
     73: {{2,4}}         257: {{3,5}}          449: {{2,10}}
     79: {{1,5}}         269: {{2,8}}          467: {{4,6}}
     91: {{1,1},{1,2}}   271: {{1,10}}         487: {{2,11}}
     97: {{3,3}}         293: {{1,11}}         491: {{1,15}}
    101: {{1,6}}         299: {{1,2},{2,2}}    499: {{3,8}}
    137: {{2,5}}         301: {{1,1},{1,4}}    511: {{1,1},{2,4}}
    139: {{1,7}}         313: {{3,6}}          553: {{1,1},{1,5}}
    149: {{3,4}}         329: {{1,1},{2,3}}    559: {{1,2},{1,4}}
		

Crossrefs

The case with only one edge is A106349.
The case covering an initial interval is A320461.
The version allowing multiple edges is A339112.
The half-loop version covering an initial interval is A340018.
The half-loop version is A340019.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
Previous Showing 11-20 of 62 results. Next