cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A319759 Number of non-isomorphic intersecting multiset partitions of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 13, 49, 199
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 13 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
   {{1,2},{1,3},{2,3},{2,3}}
		

Crossrefs

A319779 Number of intersecting multiset partitions of weight n whose dual is not an intersecting multiset partition.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 20, 66, 226, 696, 2156
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(6) = 20 multiset partitions:
4: {{1,3},{2,3}}
5: {{1,2},{2,3,3}}
   {{1,3},{2,3,3}}
   {{1,4},{2,3,4}}
   {{3},{1,3},{2,3}}
6: {{1,2},{2,3,3,3}}
   {{1,3},{2,2,3,3}}
   {{1,3},{2,3,3,3}}
   {{1,3},{2,3,4,4}}
   {{1,4},{2,3,4,4}}
   {{1,5},{2,3,4,5}}
   {{1,1,2},{2,3,3}}
   {{1,2,2},{2,3,3}}
   {{1,2,3},{3,4,4}}
   {{1,2,4},{3,4,4}}
   {{1,2,5},{3,4,5}}
   {{1,3,3},{2,3,3}}
   {{1,3,4},{2,3,4}}
   {{2},{1,2},{2,3,3}}
   {{3},{1,3},{2,3,3}}
   {{4},{1,4},{2,3,4}}
   {{1,3},{2,3},{2,3}}
   {{1,3},{2,3},{3,3}}
   {{1,4},{2,4},{3,4}}
   {{3},{3},{1,3},{2,3}}
		

Crossrefs

A319755 Number of non-isomorphic intersecting set multipartitions (multisets of sets) of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 19, 30, 60, 107, 212
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set multipartition is intersecting if no two parts are disjoint. The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 set multipartitions:
1: {{1}}
2: {{1,2}}
   {{1},{1}}
3: {{1,2,3}}
   {{2},{1,2}}
   {{1},{1},{1}}
4: {{1,2,3,4}}
   {{3},{1,2,3}}
   {{1,2},{1,2}}
   {{1,3},{2,3}}
   {{2},{2},{1,2}}
   {{1},{1},{1},{1}}
5: {{1,2,3,4,5}}
   {{4},{1,2,3,4}}
   {{1,4},{2,3,4}}
   {{2,3},{1,2,3}}
   {{2},{1,2},{1,2}}
   {{3},{3},{1,2,3}}
   {{3},{1,3},{2,3}}
   {{2},{2},{2},{1,2}}
   {{1},{1},{1},{1},{1}}
		

Crossrefs

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A319774 Number of intersecting set systems spanning n vertices whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 2, 14, 814, 1174774, 909125058112, 291200434263385001951232
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			The a(3) = 14 set systems:
   {{1},{1,2},{1,2,3}}
   {{1},{1,3},{1,2,3}}
   {{2},{1,2},{1,2,3}}
   {{2},{2,3},{1,2,3}}
   {{3},{1,3},{1,2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,2},{1,3},{1,2,3}}
   {{1,2},{2,3},{1,2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{1,2},{1,3},{1,2,3}}
   {{2},{1,2},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Intersecting set-systems are A051185.
The unlabeled multiset partition version is A319773.
The covering case is A327037.
The version without strict dual is A327038.
Cointersecting set-systems are A327039.
The BII-numbers of these set-systems are A327061.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[#,Intersection[#1,#2]=={}&]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] (* Gus Wiseman, Aug 19 2019 *)

Extensions

a(6)-a(7) from Christian Sievers, Aug 18 2024

A319767 Number of non-isomorphic intersecting set systems spanning n vertices whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 1, 5, 73
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 5 multiset partitions:
1: {{1}}
2: {{2},{1,2}}
3: {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

A319786 Number of factorizations of n where no two factors are relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

First differs from A305193 at a(36) = 4, A305193(36) = 5.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(48) = 7 factorizations are (2*2*2*6), (2*2*12), (2*4*6), (2*24), (4*12), (6*8), (48).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!Or@@CoprimeQ@@@Subsets[#,{2}]&]],{n,100}]
  • PARI
    A319786(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A319786(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A319787 Number of intersecting multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 3, 8, 27, 95, 373, 1532, 6724
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
A multiset partition is intersecting iff no two parts are disjoint.

Examples

			The a(1) = 1 through a(3) = 8 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,1,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
   {{1},{1,2}}
   {{1},{1},{1}}
		

Crossrefs

A306007 Number of non-isomorphic intersecting antichains of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 14, 22
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. The weight of S is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 14 set-systems:
{{1,2,3,4,5,6,7,8}}
{{1,7},{2,3,4,5,6,7}}
{{1,2,7},{3,4,5,6,7}}
{{1,5,6},{2,3,4,5,6}}
{{1,2,3,7},{4,5,6,7}}
{{1,2,5,6},{3,4,5,6}}
{{1,3,4,5},{2,3,4,5}}
{{1,2},{1,3,4},{2,3,4}}
{{1,4},{1,5},{2,3,4,5}}
{{1,5},{2,4,5},{3,4,5}}
{{1,6},{2,6},{3,4,5,6}}
{{1,6},{2,3,6},{4,5,6}}
{{2,4},{1,2,5},{3,4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

A318720 Numbers k such that there exists a strict relatively prime factorization of k in which no pair of factors is relatively prime.

Original entry on oeis.org

900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

From Amiram Eldar, Nov 01 2020: (Start)
Also, numbers with more than two non-unitary prime divisors, i.e., numbers k such that A056170(k) > 2, or equivalently, numbers divisible by the squares of three distinct primes.
The complement of the union of A005117, A190641 and A338539.
The asymptotic density of this sequence is 1 - 6/Pi^2 - (6/Pi^2)*A154945 - (3/Pi^2)*(A154945^2 - A324833) = 0.0033907041... (End)

Examples

			900 is in the sequence because the factorization 900 = (6*10*15) is relatively prime (since the GCD of (6,10,15) is 1) but each of the pairs (6,10), (6,15), (10,15) has a common divisor > 1. Larger examples are:
1800 = (6*15*20) = (10*12*15).
9900 = (6*10*165) = (6*15*110) = (10*15*66).
5400 = (6*20*45) = (10*12*45) = (10*15*36) = (15*18*20).
60 is not in the sequence because all its possible factorizations (4 * 15, 3 * 4 * 5, etc.) contain at least one pair that is coprime, if not more than one prime.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_] := If[n <= 1, {{}}, Join@@Table[(Prepend[#1, d] &)/@Select[strfacs[n/d], Min@@#1 > d &], {d, Rest[Divisors[n]]}]]; Select[Range[10000], Function[n, Select[strfacs[n], And[GCD@@# == 1, And@@(GCD[##] > 1 &)@@@Select[Tuples[#, 2], Less@@# &]] &] != {}]]
    Select[Range[20000], Count[FactorInteger[#][[;;,2]], ?(#1 > 1 &)] > 2 &] (* _Amiram Eldar, Nov 01 2020 *)
Previous Showing 11-20 of 41 results. Next