A324765
Number of recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
Offset: 1
The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) (o((oo)))
((((o)))) (oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
-
nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@#,#]=={}&];
Table[Length[nallt[n]],{n,10}]
A324743
Number of maximal subsets of {1...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 8, 8, 8, 8, 12, 12, 18, 18, 19, 19, 30, 30, 54, 54, 54, 54, 96, 96, 96, 96, 96, 96, 156, 156, 244, 244, 248, 248, 248, 248, 440, 440, 440, 440, 688, 688, 1120, 1120, 1120, 1120, 1864, 1864, 1864, 1864, 1864, 1864, 3664, 3664, 3664, 3664, 3664
Offset: 0
The a(0) = 1 through a(8) = 8 maximal subsets:
{} {1} {1} {2} {1,3} {1,3} {1,3} {1,3,7} {1,3,7}
{2} {1,3} {2,4} {1,5} {1,5} {1,5,7} {1,5,7}
{3,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8}
{2,4,5} {3,4,6} {2,5,7} {2,5,7,8}
{4,5,6} {3,4,6} {3,4,6,8}
{3,6,7} {3,6,7,8}
{4,5,6} {4,5,6,8}
{5,6,7} {5,6,7,8}
An example for n = 15 is {1,5,7,9,13,15}, with prime indices:
1: {}
5: {3}
7: {4}
9: {2,2}
13: {6}
15: {2,3}
None of these prime indices {2,3,4,6} belong to the subset, as required.
The non-maximal case is
A324741. The case for subsets of {2...n} is
A324763.
Cf.
A000720,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A304360,
A306844,
A320426,
A324764.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,0,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019
A324844
Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1
The a(1) = 1 through a(6) = 13 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (o(oo)) (o(ooo))
(((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) ((o(oo)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
The Matula-Goebel numbers of these trees are given by
A324845.
Cf.
A324694,
A324738,
A324744,
A324749,
A324754,
A324759,
A324765,
A324768,
A324838,
A324843,
A324846,
A324847,
A324848,
A324849.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
Table[Length[rallt[n]],{n,10}]
A324840
Number of fully recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1
The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo))
(((o))) (((oo))) (((ooo))) (((oooo)))
((o)(o)) ((o)(oo)) ((o)(ooo))
((((o)))) ((((oo)))) ((oo)(oo))
(((o)(o))) ((((ooo))))
(((((o))))) (((o))(oo))
(((o)(oo)))
((o)((oo)))
((o)(o)(o))
(((((oo)))))
((((o)(o))))
(((o))((o)))
((((((o))))))
-
dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&];
Table[Length[dallt[n]],{n,10}]
A324744
Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0
The a(1) = 1 through a(8) = 6 maximal subsets:
{1} {1} {2} {1,3} {1,3} {1,3,6} {3,4,6} {1,3,6,7}
{2} {1,3} {2,4} {1,5} {1,5,6} {1,3,6,7} {1,5,6,7}
{3,4} {3,4} {3,4,6} {1,5,6,7} {3,4,6,8}
{2,4,5} {2,4,5,6} {2,4,5,6} {3,6,7,8}
{2,5,6,7} {2,4,5,6,8}
{2,5,6,7,8}
The non-maximal case is
A324738. The case for subsets of {2...n} is
A324762.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290822,
A304360,
A306844,
A320426,
A324764.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
A324768
Number of fully anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 27, 60, 152, 376, 968, 2492, 6549, 17259, 46000, 123214, 332304, 900406, 2451999, 6703925
Offset: 1
The a(1) = 1 through a(6) = 11 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]
A324738
Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
Offset: 0
The a(0) = 1 through a(6) = 26 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {1,6}
{3,4} {2,4}
{4,5} {2,5}
{2,4,5} {2,6}
{3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{1,3,6}
{1,5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324744. The case of subsets of {2...n} is
A324739. The strict integer partition version is
A324749. The integer partition version is
A324754. The Heinz number version is
A324759. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324742
Number of subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
Offset: 1
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {3,4}
{2,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{3,4,6}
{4,5,6}
An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices:
4: {1,1}
5: {3}
6: {1,2}
12: {1,1,2}
17: {7}
18: {1,2,2}
19: {8}
None of these prime indices {1,2,3,7,8} belong to the set, as required.
The maximal case is
A324763. The version for subsets of {1...n} is
A324741. The strict integer partition version is
A324752. The integer partition version is
A324757. The Heinz number version is
A324761. An infinite version is
A304360.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A306844,
A324764.
-
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A324763
Number of maximal subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1
The a(1) = 1 through a(9) = 6 subsets:
{} {2} {2} {2,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8} {2,4,5,8}
{3} {3,4} {2,4,5} {3,4,6} {2,5,7} {2,5,7,8} {2,5,7,8}
{4,5,6} {3,4,6} {3,4,6,8} {3,4,6,8,9}
{3,6,7} {3,6,7,8} {3,6,7,8,9}
{4,5,6} {4,5,6,8} {4,5,6,8,9}
{5,6,7} {5,6,7,8} {5,6,7,8,9}
The non-maximal version is
A324742.
The version for subsets of {1...n} is
A324741.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019
Comments