cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A379923 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^k * A000005(k).

Original entry on oeis.org

1, 5, 18, 22, 25, 29, 197, 1350, 1360, 1362, 1368, 1381, 1391, 1395, 10200, 75486, 75490, 557768, 557843, 557853, 557898, 4121846, 4122064, 4122112, 4122222, 30457732, 30457773, 30457835, 30458040, 30458133, 30458138, 30458140, 30458335, 225056911, 225056919, 225056925, 225056989
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A307704(m).
The corresponding quotients, A307704(m)/m, are -1, 0, 1, 1, 1, 1, 2, 3, 3, 3, ... (see the link for more values).
a(38) > 2*10^10, if it exists.

Crossrefs

Programs

  • Mathematica
    With[{m = 10000}, Position[Accumulate[Table[(-1)^n * DivisorSigma[0, n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * numdiv(k); if(!(s % k), print1(k, ", ")));

A357843 Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

Original entry on oeis.org

1, 1, 1, 2, 7, 11, 17, 7, 3, 5, 7, 19, 25, 11, 25, 113, 143, 133, 163, 51, 14, 51, 61, 117, 391, 361, 391, 371, 431, 52, 119, 19, 81, 19, 81, 709, 799, 377, 799, 1553, 1733, 211, 467, 226, 467, 889, 979, 961, 1021, 991, 259, 503, 274, 2147, 2237, 274, 1141, 274
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Examples

			Fractions begin with 1, 1/2, 1, 2/3, 7/6, 11/12, 17/12, 7/6, 3/2, 5/4, 7/4, 19/12, ...
		

Crossrefs

Cf. A000005, A307704, A357844 (denominators).
Similar sequences: A104528, A211177, A357820.

Programs

  • Mathematica
    Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(numerator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_count
    def A357843(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
a(n)/A357844(n) ~ n * Sum_{k=1..N} B_k/log(n)^(k-1/2) + O(n/log(n)^(N+1/2)), where B_k are constants, and in particular B_1 = (1/log(2) - 1) * (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Tóth, 2017).

A357844 Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

Original entry on oeis.org

1, 2, 1, 3, 6, 12, 12, 6, 2, 4, 4, 12, 12, 6, 12, 60, 60, 60, 60, 20, 5, 20, 20, 40, 120, 120, 120, 120, 120, 15, 30, 5, 20, 5, 20, 180, 180, 90, 180, 360, 360, 45, 90, 45, 90, 180, 180, 180, 180, 180, 45, 90, 45, 360, 360, 45, 180, 45, 90, 180, 180, 45, 90, 630
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357843 for more details.

Crossrefs

Cf. A000005, A307704, A357843 (numerators).
Similar sequences: A104529, A211178, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_count
    def A357844(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).

A379921 Partial alternating sums of the sigma_2 function: a(n) = Sum_{k=1..n} (-1)^(k+1) * sigma_2(k).

Original entry on oeis.org

1, -4, 6, -15, 11, -39, 11, -74, 17, -113, 9, -201, -31, -281, -21, -362, -72, -527, -165, -711, -211, -821, -291, -1141, -490, -1340, -520, -1570, -728, -2028, -1066, -2431, -1211, -2661, -1361, -3272, -1902, -3712, -2012, -4222, -2540, -5040, -3190, -5752, -3386
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[(-1)^(k+1) * DivisorSigma[2, k], {k, 1, 100}]]
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += (-1)^(k+1) * sigma(k, 2); print1(s, ", "));}

Formula

a(n) ~ -zeta(3) * n^3 / 24.
In general, for m >= 2, Sum_{k=1..n} (-1)^(k+1) * sigma_m(k) ~ -zeta(m+1) * n^(m+1) / ((m+1)*2^(m+1)).

A326440 a(n) = 1 - tau(1) + tau(2) - tau(3) + ... + (-1)^n tau(n), where tau = A000005 is number of divisors.

Original entry on oeis.org

1, 0, 2, 0, 3, 1, 5, 3, 7, 4, 8, 6, 12, 10, 14, 10, 15, 13, 19, 17, 23, 19, 23, 21, 29, 26, 30, 26, 32, 30, 38, 36, 42, 38, 42, 38, 47, 45, 49, 45, 53, 51, 59, 57, 63, 57, 61, 59, 69, 66, 72, 68, 74, 72, 80, 76, 84, 80, 84, 82, 94, 92, 96, 90, 97, 93, 101, 99
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2019

Keywords

Comments

Is this sequence nonnegative?
As tau(n) is odd when n is a square, there are alternating strings of even and odd integers with change of parity for each n square. Indeed, between m^2 and (m+1)^2-1, there is a string of 2m+1 even terms if m is odd, or a string of 2m+1 odd terms if m is even. - Bernard Schott, Jul 10 2019

Examples

			The first 6 terms of A000005 are 1, 2, 2, 3, 2, 4, so a(6) = 1 - 1 + 2 - 2 + 3 - 2 + 4 = 5.
		

Crossrefs

Programs

  • Magma
    [1] cat [1+(&+[(-1)^(k)*#Divisors(k):k in [1..n]]):n in [1..70]]; // Marius A. Burtea, Jul 10 2019
  • Mathematica
    Accumulate[Table[If[k==0,1,(-1)^k*DivisorSigma[0,k]],{k,0,30}]]
  • PARI
    a(n) = 1 - sum(k=1, n, (-1)^(k+1)*numdiv(k)); \\ Michel Marcus, Jul 09 2019
    

Formula

a(n) = 1 + Sum_{k=1..n} (-1)^k A000005(k).
For n > 0, a(n) = 1 + A307704(n).
If p prime, a(p) = a(p-1) - 2. - Bernard Schott, Jul 10 2019

A379714 Partial alternating sums of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -2, 0, -1, 0, -2, -1, -2, -1, -4, -3, -5, -4, -6, -5, -6, -5, -7, -5, -6, -4, -6, -5, -6, -5, -7, -6, -7, -6, -10, -9, -10, -9, -11, -10, -11, -10, -12, -10, -11, -10, -13, -11, -13, -12, -14, -13, -15, -14, -16, -15, -16, -15, -17, -16
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Table[(-1)^(n+1)*ediv[n], {n, 1, 100}]]
  • PARI
    ediv(n) = vecprod(apply(numdiv, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) * ediv(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A049419(k).
Limit_{n->oo} a(n)/n = A327837 * (2/(A065442 + 1) - 1) = -0.37293122584744001729... .
Previous Showing 11-16 of 16 results.