cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A331783 Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o(oo)))
                          ((((o))))  ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The lone-child-avoiding case is A212804.
The identity tree version is A316471.
The Matula-Goebel numbers of these trees are given by A331682.
Identity trees are A004111.
Semi-identity trees are A306200.
Locally disjoint rooted trees are A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are A316494.

Programs

  • Mathematica
    disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]];
    Table[Length[ldrsi[n]],{n,10}]

A331937 a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).

Original entry on oeis.org

1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted identity trees. A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. It is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. In an identity tree, the branches of any given vertex are all distinct. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of terms together with their associated trees begins:
     1: o
     2: (o)
     6: (o(o))
    26: (o(o(o)))
   202: (o(o(o(o))))
  2462: (o(o(o(o(o)))))
		

Crossrefs

The semi-identity tree version is A331681.
Not requiring an identity tree gives A331873.
Not requiring local disjointness gives A331963.
Not requiring lone-child-avoidance gives A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding).

Extensions

a(14)-a(15) from Giovanni Resta, Feb 10 2020

A331684 Number of locally disjoint enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct non-overlapping locally disjoint enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A316694.
The non-identity version is A331687.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875, with locally disjoint case A331687.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldeip[n]],{n,12}]

A331993 Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(7) = 11 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                (o(o))  (o(oo))  (o(ooo))   (o(oooo))
                        (oo(o))  (oo(oo))   (oo(ooo))
                                 (ooo(o))   (ooo(oo))
                                 ((o)(oo))  (oooo(o))
                                 (o(o(o)))  ((o)(ooo))
                                            (o(o)(oo))
                                            (o(o(oo)))
                                            (o(oo(o)))
                                            (oo(o(o)))
                                            ((o)(o(o)))
		

Crossrefs

Not requiring any lone-child-avoidance gives A306200.
The locally disjoint case is A324969 (essentially A000045).
Matula-Goebel numbers of these trees are A331994.
Lone-child-avoiding rooted identity trees are A000007.
Semi-lone-child-avoiding rooted trees are A331934.
Semi-lone-child-avoiding rooted identity trees are A331964.
Lone-child-avoiding rooted semi-identity trees are A331966.

Programs

  • Mathematica
    sssb[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sssb[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 09 2020

A358460 Number of locally disjoint ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 103, 301, 902, 2767, 8637, 27324, 87409, 282319, 919352
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2022

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex.

Examples

			The a(1) = 1 through a(5) = 13 trees:
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (o(o))   ((ooo))
                 (((o)))  (o(o)o)
                          (o(oo))
                          (oo(o))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The locally non-intersecting version is A143363, unordered A007562.
The unordered version is A316473, ranked by A316495.
A000108 counts ordered rooted trees, unordered A000081.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join @@ Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,{_,x_,_},_,{_,x_,_},_}]&]],{n,10}]

A319291 Number of series-reduced locally disjoint rooted trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 12, 107, 1299, 20764, 412957, 9817743
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			The a(3) = 12 series-reduced locally disjoint rooted trees:
  (1(11))
   (111)
  (1(22))
  (2(12))
   (122)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
The trees counted by A316651(4) but not by a(4):
  ((11)(12))
  ((12)(13))
  ((12)(22))
  ((12)(23))
  ((13)(23))
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
Previous Showing 11-16 of 16 results.