A331783
Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1
The a(1) = 1 through a(6) = 17 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(((o))) (oo(o)) (oo(oo))
(((oo))) (ooo(o))
((o(o))) (((ooo)))
(o((o))) ((o(oo)))
((((o)))) ((oo(o)))
(o((oo)))
(o(o(o)))
(oo((o)))
((((oo))))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
The lone-child-avoiding case is
A212804.
The identity tree version is
A316471.
The Matula-Goebel numbers of these trees are given by
A331682.
Locally disjoint rooted trees are
A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are
A316494.
-
disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]];
Table[Length[ldrsi[n]],{n,10}]
A331937
a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).
Original entry on oeis.org
1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1
The sequence of terms together with their associated trees begins:
1: o
2: (o)
6: (o(o))
26: (o(o(o)))
202: (o(o(o(o))))
2462: (o(o(o(o(o)))))
The semi-identity tree version is
A331681.
Not requiring an identity tree gives
A331873.
Not requiring local disjointness gives
A331963.
Not requiring lone-child-avoidance gives
A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are
A331935.
Cf.
A007097,
A061775,
A276625,
A316471,
A316495,
A316694,
A331679,
A331683,
A331686,
A331872,
A331934,
A331936,
A331964,
A331965.
A331684
Number of locally disjoint enriched identity p-trees of weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1
The a(1) = 1 through a(6) = 14 enriched p-trees:
1 2 3 4 5 6
(21) (31) (32) (42)
((21)1) (41) (51)
((21)2) (321)
((31)1) ((21)3)
(((21)1)1) ((31)2)
((32)1)
(3(21))
((41)1)
((21)21)
(((21)1)2)
(((21)2)1)
(((31)1)1)
((((21)1)1)1)
The non-identity version is
A331687.
Locally disjoint identity trees are
A316471.
Enriched identity p-trees are
A331875, with locally disjoint case
A331687.
Cf.
A000669,
A005804,
A141268,
A300660,
A316696,
A316697,
A331678,
A331679,
A331680,
A331683,
A331686,
A331783,
A331874.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
Table[Length[ldeip[n]],{n,12}]
A331993
Number of semi-lone-child-avoiding rooted semi-identity trees with n unlabeled vertices.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 22, 43, 90, 185, 393, 835, 1802, 3904, 8540, 18756, 41463, 92022, 205179, 459086, 1030917, 2321949, 5245104, 11878750, 26967957, 61359917, 139902251, 319591669, 731385621, 1676573854, 3849288924, 8850674950, 20378544752, 46982414535
Offset: 1
The a(1) = 1 through a(7) = 11 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
((o)(oo)) (oooo(o))
(o(o(o))) ((o)(ooo))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo(o(o)))
((o)(o(o)))
Not requiring any lone-child-avoidance gives
A306200.
Matula-Goebel numbers of these trees are
A331994.
Lone-child-avoiding rooted identity trees are
A000007.
Semi-lone-child-avoiding rooted trees are
A331934.
Semi-lone-child-avoiding rooted identity trees are
A331964.
Lone-child-avoiding rooted semi-identity trees are
A331966.
Cf.
A001678,
A004111,
A300660,
A316694,
A331683,
A331686,
A331783,
A331875,
A331933,
A331963,
A331965.
-
sssb[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
Table[Length[sssb[n]],{n,10}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020
A358460
Number of locally disjoint ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 13, 36, 103, 301, 902, 2767, 8637, 27324, 87409, 282319, 919352
Offset: 1
The a(1) = 1 through a(5) = 13 trees:
o (o) (oo) (ooo) (oooo)
((o)) ((o)o) ((o)oo)
((oo)) ((oo)o)
(o(o)) ((ooo))
(((o))) (o(o)o)
(o(oo))
(oo(o))
(((o))o)
(((o)o))
(((oo)))
((o(o)))
(o((o)))
((((o))))
-
aot[n_]:=If[n==1,{{}},Join @@ Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],FreeQ[#,{_,{_,x_,_},_,{_,x_,_},_}]&]],{n,10}]
A319291
Number of series-reduced locally disjoint rooted trees with n leaves spanning an initial interval of positive integers.
Original entry on oeis.org
1, 2, 12, 107, 1299, 20764, 412957, 9817743
Offset: 1
The a(3) = 12 series-reduced locally disjoint rooted trees:
(1(11))
(111)
(1(22))
(2(12))
(122)
(1(12))
(2(11))
(112)
(1(23))
(2(13))
(3(12))
(123)
The trees counted by A316651(4) but not by a(4):
((11)(12))
((12)(13))
((12)(22))
((12)(23))
((13)(23))
Cf.
A000081,
A007562,
A301700,
A316473,
A316475,
A316495,
A316651,
A316694,
A316695,
A316696,
A316697,
A319286.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]];
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
Comments