cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A367736 a(0) = 1; for n > 0, a(n) is the coefficient of x^a(n-1) in the expansion of Product_{k=0..n-1} (x^a(k) + 1 + 1/x^a(k)).

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 32, 58, 97, 163, 290, 501, 856, 1483, 2561, 4424, 7652, 13273, 23024, 39784, 69001, 119614, 207042, 358746, 621117, 1075865, 1864050, 3227724, 5590548, 9682402, 16770033, 29049713, 50310453, 87142439, 150939346, 261424583, 452810957
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Coefficient[Product[x^a[k] + 1 + 1/x^a[k], {k, 0, n - 1}], x, a[n - 1]]; Table[a[n], {n, 0, 28}]
  • Python
    from itertools import islice
    from collections import Counter
    def A367736_gen(): # generator of terms
        c, b = {0:1}, 1
        while True:
            yield b
            d = Counter(c)
            for k in c:
                e = c[k]
                d[k+b] += e
                d[k-b] += e
            c = d
            b = c[b]
    A367736_list = list(islice(A367736_gen(),20)) # Chai Wah Wu, Feb 05 2024

Extensions

a(29)-a(37) from Chai Wah Wu, Feb 05 2024

A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 11, 25, 56, 129, 313, 748, 1831, 4584, 11581, 29555, 76398, 199191, 522746, 1382158, 3676072, 9828631, 26412174, 71310248, 193346941, 526302232, 1437895915, 3941671019, 10839118898, 29893768219, 82671240995, 229213877639, 637049969282
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
         `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+
            b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n], {n, 0, 32}]

A369517 a(n) = [x^(n^4)] Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 9, 20, 43, 85, 183, 394, 1010, 2254, 5589, 12383, 31226, 71153, 182382, 426055, 1105686, 2615167, 6906858, 16607500, 44276140, 107836782, 290059089, 715361182, 1937639649, 4829754357, 13160903826, 33112002835, 90800047879
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, b(n, i-1)+
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> b(n^4, n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jan 25 2024
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[n, i-1] + b[Abs[n-i^4], i-1] + b[n+i^4, i-1]]]][i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30];
    a[n_] := b[n^4, n];
    Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)

Extensions

a(34)-a(37) from Alois P. Heinz, Jan 25 2024
Previous Showing 11-13 of 13 results.