cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 1, 5, 5, 4, 1, 2, 1, 7, 3, 6, 1, 7, 2, 7, 3, 9, 1, 11, 1, 5, 7, 8, 7, 3, 1, 9, 2, 10, 1, 7, 1, 11, 4, 10, 1, 9, 1, 5, 9, 13, 1, 5, 8, 13, 5, 11, 1, 17, 1, 12, 5, 6, 1, 17, 1, 15, 11, 19, 1, 4, 1, 13, 7, 17, 9, 5, 1, 13, 2, 14, 1, 11, 10, 15, 3, 16, 1, 7, 5, 19, 13, 16, 11, 11, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator
  • PARI
    A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ Antti Karttunen, Nov 17 2019

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.

Extensions

More terms from Antti Karttunen, Nov 17 2019

A318584 Number of integer partitions of n whose sum of reciprocals squared is 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 0, 0, 2, 0, 2, 1, 2, 2, 2, 1, 1, 2, 3, 0, 1, 1, 6, 2, 3, 2, 6, 2, 2, 3, 2, 6, 7, 2, 4, 3, 9, 4, 7, 5, 8, 8, 7, 9, 9, 11, 12, 7, 9, 11, 17, 9, 13, 12, 17, 16, 13, 15, 20, 26, 27, 18, 23
Offset: 0

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The a(16) = 1 integer partition:
(6,3,3,2,2,2)
The a(48) = 2 integer partitions:
(18,9,9,3,3,2,2,2)
(6,6,6,6,3,3,3,3,3,3,3,3)
The a(56) = 3 integer partitions:
(12,6,6,4,4,4,4,4,4,4,2,2)
(10,6,5,5,5,5,5,5,3,3,2,2)
(6,6,4,4,4,4,4,4,4,4,3,3,3,3)
The a(60) = 6 integer partitions:
(12,12,12,12,3,3,2,2,2)
(8,8,8,8,6,4,4,4,3,3,2,2)
(6,6,6,6,6,6,6,6,6,2,2,2)
(12,12,12,4,3,3,3,3,3,3,2)
(10,5,5,5,5,5,5,4,4,4,4,2,2)
(6,4,4,4,4,4,4,4,4,4,4,4,4,3,3)

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[#^(-2)]==1&]],{n,30}]

Extensions

a(61)-a(100) from Alois P. Heinz, Aug 30 2018

A318589 Heinz numbers of integer partitions whose sum of reciprocals squared is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],IntegerQ[1/Total[If[#==1,{},Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]^2]]]]&]

A318574 Denominator of the reciprocal sum of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 6, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 1, 12, 8, 3, 3, 13, 4, 14, 5, 3, 9, 15, 2, 2, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 2, 10, 19, 7, 18, 12, 20, 1, 21, 12, 6, 8, 20, 3, 22
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Denominator

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the denominator of Sum y_i/x_i.

A316890 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Includes 29888089, which is the first perfect power in the sequence and is absent from A316888.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316898 Number of integer partitions of n into relatively prime parts whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 4, 1, 3, 1, 1, 1, 3, 1, 8, 3, 1, 1, 9, 2, 11, 3, 3, 3, 5, 2, 7, 6, 4, 7, 12, 5, 14, 6, 11, 12, 25, 11, 27, 17, 15, 19, 25, 9, 37, 20, 21, 19, 31, 19, 38, 33, 26, 37, 38, 36, 64, 39, 46, 53, 63, 39, 80, 63, 65, 66, 94, 59, 105
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
Records: 1, 2, 4, 8, 9, 11, 12, 14, 25, 27, 37, 38, 64, 80, 94, 105, 119, 154, 184, ..., . - Robert G. Wilson v, Jul 18 2018

Examples

			The a(37) = 8 partitions: (20,12,5), (15,12,10), (24,8,3,2), (15,10,6,6), (20,5,4,4,4), (15,10,6,3,3), (14,7,7,7,2), (10,10,10,5,2).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, s = 0, lmt = 1 + PartitionsP@ n}, While[k < lmt, s += Length[ Select[ IntegerPartitions[n, {k, k}], GCD @@ # == 1 && IntegerQ[1/Sum[1/m, {m, #}]] &]]; k++]; s]; Array[f, 50] (* slightly modified by Robert G. Wilson v, Jul 17 2018 *) (* or *)
    ric[n_,p_,s_] := If[n==0, If[IntegerQ[1/s] && GCD @@ p == 1, c++], Do[ If[s + 1/i <= 1, ric[n-i, Append[p, i], s + 1/i]], {i, Min[p[[-1]], n], 1, -1}]]; a[n_] := (c=0; Do[ric[n-j, {j}, 1/j], {j, n}]; c); Array[a, 50] (* Giovanni Resta, Jul 18 2018 *)

Extensions

a(51)-a(91) from Robert G. Wilson v, Jul 17 2018

A316889 Heinz numbers of aperiodic integer partitions whose reciprocal sum is 1.

Original entry on oeis.org

2, 147, 195, 3185, 6475, 6591, 7581, 10101, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 107653, 123823, 142805, 164255, 164983, 171941, 218855, 228085, 267883, 304175, 312785, 333925, 333935, 335405, 343735, 355355, 390963, 414295, 442975, 444925, 455975
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			Sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (4,4,2), (6,3,2), (6,4,4,3), (12,4,3,3), (6,6,6,2), (8,8,4,2), (12,6,4,2), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316891 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 5, 2, 7, 4, 7, 6, 13, 7, 18, 12, 20, 17, 32, 20, 39, 31, 47, 45, 74, 56, 96, 83, 109, 105, 151, 130, 199, 183, 234, 232, 319, 286, 404, 386, 473, 488, 638, 599, 782, 767, 931, 960, 1197, 1165, 1465, 1477, 1747, 1814, 2212, 2196
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(17) = 13 partitions:
(6443),
(44441),
(3332222), (6322211),
(44222111),
(222222221), (333221111), (632111111),
(4421111111),
(22222211111), (33311111111),
(2222111111111),
(221111111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,50}]

Extensions

a(51)-a(60) from Alois P. Heinz, Jul 18 2018

A316893 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 3, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 1, 5, 2, 9, 3, 3, 3, 4, 2, 6, 6, 3, 4, 9, 5, 10, 4, 10, 8, 15, 10, 21, 12, 14, 16, 18, 9, 30, 18, 17, 16, 28, 16, 29, 25, 26, 30, 28, 33, 48, 31
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(71)-a(80) from Giovanni Resta, Jul 16 2018
Previous Showing 11-20 of 30 results. Next