cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 103 results. Next

A319639 Number of antichain covers of n vertices by distinct sets whose dual is also an antichain of distinct sets.

Original entry on oeis.org

1, 1, 1, 2, 20, 2043
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			The a(1) = 1 through a(3) = 2 antichain covers:
1: {{1}}
2: {{1},{2}}
3: {{1},{2},{3}}
   {{1,2},{1,3},{2,3}}
		

Crossrefs

A319748 Number of non-isomorphic set multipartitions (multisets of sets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 1, 3, 10, 25, 72, 182, 502, 1332, 3720, 10380, 30142, 88842, 270569, 842957, 2703060, 8885029, 29990388, 103743388, 367811233, 1334925589, 4957151327, 18817501736, 72972267232, 288863499000, 1166486601571, 4802115258807, 20141268290050, 86017885573548, 373852868791639
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a set multipartition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 10 set multipartitions:
  {{1},{2}}   {{1},{2,3}}     {{1},{2,3,4}}
             {{1},{2},{2}}    {{1,2},{3,4}}
             {{1},{2},{3}}   {{1},{1},{2,3}}
                             {{1},{2},{1,2}}
                             {{1},{2},{3,4}}
                             {{1},{3},{2,3}}
                            {{1},{1},{2},{2}}
                            {{1},{2},{2},{2}}
                            {{1},{2},{3},{3}}
                            {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=R(q,n)); s+=permcount(q)*polcoef(exp(sum(t=1, n, u[t], O(x*x^n))) - exp(sum(t=1, n\2, x^t*u[t], O(x*x^n)))/(1-x), n)); s/n!)} \\ Andrew Howroyd, May 30 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 30 2023

A319767 Number of non-isomorphic intersecting set systems spanning n vertices whose dual is also an intersecting set system.

Original entry on oeis.org

1, 1, 1, 5, 73
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 5 multiset partitions:
1: {{1}}
2: {{2},{1,2}}
3: {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

A319786 Number of factorizations of n where no two factors are relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

First differs from A305193 at a(36) = 4, A305193(36) = 5.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(48) = 7 factorizations are (2*2*2*6), (2*2*12), (2*4*6), (2*24), (4*12), (6*8), (48).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!Or@@CoprimeQ@@@Subsets[#,{2}]&]],{n,100}]
  • PARI
    A319786(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A319786(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A319787 Number of intersecting multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 3, 8, 27, 95, 373, 1532, 6724
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
A multiset partition is intersecting iff no two parts are disjoint.

Examples

			The a(1) = 1 through a(3) = 8 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,1,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
   {{1},{1,2}}
   {{1},{1},{1}}
		

Crossrefs

A323788 Number of non-isomorphic weight-n sets of multisets of multisets.

Original entry on oeis.org

1, 1, 5, 19, 88, 391, 1995, 10281
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic strict multiset partitions of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 19 multiset partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{1}}    {{123}}
         {{1}{2}}    {{1}{11}}
         {{1}}{{2}}  {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}{1}{1}}
                     {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323789 Number of non-isomorphic weight-n sets of sets of multisets.

Original entry on oeis.org

1, 1, 4, 15, 64, 269, 1310, 6460
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic strict multiset partitions, with strict parts, of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partition partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{2}}    {{123}}
         {{1}}{{2}}  {{1}{11}}
                     {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323791 Number of non-isomorphic weight-n sets of multisets of sets.

Original entry on oeis.org

1, 1, 4, 13, 52, 196, 877, 3917
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 13 sets of multisets of sets:
  {{1}}  {{12}}      {{123}}
         {{1}{1}}    {{1}{12}}
         {{1}{2}}    {{1}{23}}
         {{1}}{{2}}  {{1}{1}{1}}
                     {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323792 Number of non-isomorphic weight-n multisets of sets of sets.

Original entry on oeis.org

1, 1, 4, 11, 43, 145, 614, 2549
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 11 multiset partitions:
  {{1}}  {{12}}      {{123}}
         {{1}{2}}    {{1}{12}}
         {{1}}{{1}}  {{1}{23}}
         {{1}}{{2}}  {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323793 Number of non-isomorphic weight-n multisets of multisets of sets.

Original entry on oeis.org

1, 1, 5, 15, 65, 240, 1090, 4845
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic multiset partitions of set multipartitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partitions:
  {{1}}  {{12}}      {{123}}
         {{1}{1}}    {{1}{12}}
         {{1}{2}}    {{1}{23}}
         {{1}}{{1}}  {{1}{1}{1}}
         {{1}}{{2}}  {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

Previous Showing 31-40 of 103 results. Next