cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 102 results. Next

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A320330 Number of T_0 multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 13, 25, 50, 100, 195, 366, 707, 1333, 2440
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			The a(1) = 1 through a(5) = 25 multiset partitions:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,1,1}}      {{2,2}}            {{1,1,3}}
         {{1},{1}}  {{1},{2}}      {{1,1,2}}          {{1,2,2}}
                    {{1},{1,1}}    {{1},{3}}          {{1},{4}}
                    {{1},{1},{1}}  {{2},{2}}          {{2},{3}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1},{1,2}}        {{1},{1,3}}
                                   {{2},{1,1}}        {{1},{2,2}}
                                   {{1},{1,1,1}}      {{2},{1,2}}
                                   {{1,1},{1,1}}      {{3},{1,1}}
                                   {{1},{1},{2}}      {{1,1,1,1,1}}
                                   {{1},{1},{1,1}}    {{1},{1,1,2}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{2},{1,1,1}}
                                                      {{1},{1,1,1,1}}
                                                      {{1,1},{1,1,1}}
                                                      {{1},{1},{1,2}}
                                                      {{1},{2},{1,1}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@dual[#]&]],{n,8}]

A326026 Number of non-isomorphic multiset partitions of weight n where each part has a different length.

Original entry on oeis.org

1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

The number of non-isomorphic multiset partitions of weight n is A007716(n).

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{1},{1,1}}  {{1,2,3,3}}
                  {{1},{2,2}}  {{1,2,3,4}}
                  {{1},{2,3}}  {{1},{1,1,1}}
                  {{2},{1,2}}  {{1},{1,2,2}}
                               {{1},{2,2,2}}
                               {{1},{2,3,3}}
                               {{1},{2,3,4}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)}
    a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 08 2020

A340652 Number of non-isomorphic twice-balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 0, 2, 3, 6, 20, 65, 134, 482, 1562, 4974, 15466, 51768, 179055, 631737, 2216757, 7905325, 28768472, 106852116, 402255207, 1532029660, 5902839974, 23041880550, 91129833143, 364957188701, 1478719359501, 6058859894440, 25100003070184, 105123020009481, 445036528737301
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2021

Keywords

Comments

We define a multiset partition to be twice-balanced if all of the following are equal:
(1) the number of parts;
(2) the number of distinct vertices;
(3) the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 6 multiset partitions (empty column indicated by dot):
  {{1}}  .  {{1},{2,2}}  {{1,1},{2,2}}  {{1},{1},{2,3,3}}
            {{2},{1,2}}  {{1,2},{1,2}}  {{1},{2},{2,3,3}}
                         {{1,2},{2,2}}  {{1},{2},{3,3,3}}
                                        {{1},{3},{2,3,3}}
                                        {{2},{3},{1,2,3}}
                                        {{3},{3},{1,2,3}}
		

Crossrefs

The co-balanced version is A319616.
The singly balanced version is A340600.
The cross-balanced version is A340651.
The version for factorizations is A340655.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A303975 counts distinct prime factors in prime indices.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A047993 counts balanced partitions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340653 counts balanced factorizations.
- A340657/A340656 list numbers with/without a twice-balanced factorization.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(m,n,k,y=1)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, y^t*subst(x*Polrev(K(q, t, min(k,n\t))), x, x^t)/t, O(x*x^n)))); s/m!}
    seq(n)={Vec(1 + sum(k=1,n, polcoef(G(k,n,k,y) - G(k-1,n,k,y) - G(k,n,k-1,y) + G(k-1,n,k-1,y), k, y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A368412 Number of non-isomorphic connected multiset partitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

0, 1, 2, 4, 11, 25, 75, 206, 650, 2049, 6895
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{2},{1,2}}  {{1,2,3,3}}
                               {{1,2,3,4}}
                               {{1},{1,2,2}}
                               {{1,2},{1,2}}
                               {{1,2},{2,2}}
                               {{1,3},{2,3}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

The case of labeled graphs is A129271, connected case of A133686.
The complement for labeled graphs is A140638, connected case of A367867.
This is the connected case of A368098, ranks A368100.
Complement set-systems: A368409, connected case of A368094, ranks A367907.
For set-systems we have A368410, connected case of A368095, ranks A367906.
The complement is A368411, connected case of A368097, ranks A355529.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A368411 Number of non-isomorphic connected multiset partitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 6, 15, 50, 148, 509, 1725, 6218
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 15 multiset partitions:
  {{1},{1}}  {{1},{1,1}}    {{1},{1,1,1}}      {{1},{1,1,1,1}}
             {{1},{1},{1}}  {{1,1},{1,1}}      {{1,1},{1,1,1}}
                            {{1},{1},{1,1}}    {{1},{1},{1,1,1}}
                            {{1},{2},{1,2}}    {{1},{1,1},{1,1}}
                            {{2},{2},{1,2}}    {{1},{1},{1,2,2}}
                            {{1},{1},{1},{1}}  {{1},{1,2},{2,2}}
                                               {{1},{2},{1,2,2}}
                                               {{2},{1,2},{1,2}}
                                               {{2},{1,2},{2,2}}
                                               {{2},{2},{1,2,2}}
                                               {{3},{3},{1,2,3}}
                                               {{1},{1},{1},{1,1}}
                                               {{1},{2},{2},{1,2}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
		

Crossrefs

The case of labeled graphs is A140638, connected case of A367867.
The complement for labeled graphs is A129271, connected case of A133686.
This is the connected case of A368097.
For set-systems we have A368409, connected case of A368094, ranks A367907.
Complement set-systems: A368410, connected case of A368095, ranks A367906.
The complement is A368412, connected case of A368098, ranks A368100.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A318805 Array read by antidiagonals: T(n,k) is the number of inequivalent symmetric nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 6, 8, 4, 2, 1, 1, 8, 13, 9, 4, 2, 1, 1, 10, 22, 16, 9, 4, 2, 1, 1, 13, 33, 32, 17, 9, 4, 2, 1, 1, 15, 52, 57, 35, 17, 9, 4, 2, 1, 1, 18, 76, 105, 68, 36, 17, 9, 4, 2, 1, 1, 21, 108, 178, 139, 71, 36, 17, 9, 4, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===============================================
n\k| 1 2 3 4  5  6  7   8   9  10   11   12
---+-------------------------------------------
1  | 1 1 1 1  1  1  1   1   1   1    1    1 ...
2  | 1 2 3 5  6  8 10  13  15  18   21   25 ...
3  | 1 2 4 8 13 22 33  52  76 108  150  209 ...
4  | 1 2 4 9 16 32 57 105 178 301  490  793 ...
5  | 1 2 4 9 17 35 68 139 264 502  924 1695 ...
6  | 1 2 4 9 17 36 71 151 303 619 1234 2473 ...
7  | 1 2 4 9 17 36 72 154 315 661 1370 2885 ...
8  | 1 2 4 9 17 36 72 155 318 673 1413 3034 ...
9  | 1 2 4 9 17 36 72 155 319 676 1425 3078 ...
...
		

Crossrefs

Cf. A318795.
Main diagonal is A316983.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, k_] := SeriesCoefficient[1/(Product[Product[(1 - x^(2*LCM[p[[i]], p[[j]] ]))^GCD[p[[i]], p[[j]]], {j, 1, i - 1}], {i, 2, Length[p]}]* Product[t = p[[i]]; (1 - x^t)^Mod[t, 2]*(1 - x^(2*t))^Quotient[t, 2], {i, 1, Length[p]}]), {x, 0, k}];
    T[, 1] = T[1, ] = 1; T[n_, k_] := (s = 0; Do[s += permcount[p]*c[p, k], {p, IntegerPartitions[n]}]; s/n!);
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    c(p,k)={polcoef(1/(prod(i=2, #p, prod(j=1, i-1, (1 - x^(2*lcm(p[i],p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 - x^t + O(x*x^k))^(t%2)*(1 - x^(2*t) + O(x*x^k))^(t\2) )), k)}
    T(n,k)={if(n==0, k==0, my(s=0); forpart(p=n, s+=permcount(p)*c(p,k)); s/n!)}

Formula

T(n,k) = T(k,k) for n > k.

A319766 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n whose dual is also a strict intersecting multiset partition.

Original entry on oeis.org

1, 1, 1, 4, 6, 14, 31, 64, 145, 324, 753
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,2,2,2}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{1,2},{2,2}}
5: {{1,1,1,1,1}}
   {{1,1,2,2,2}}
   {{1,2,2,2,2}}
   {{1},{1,1,1,1}}
   {{1},{1,2,2,2}}
   {{2},{1,1,2,2}}
   {{2},{1,2,2,2}}
   {{2},{1,2,3,3}}
   {{1,1},{1,1,1}}
   {{1,1},{1,2,2}}
   {{1,2},{1,2,2}}
   {{1,2},{2,2,2}}
   {{2,2},{1,2,2}}
   {{2},{1,2},{2,2}}
		

Crossrefs

A319768 Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n whose dual is a (not necessarily strict) intersecting multiset partition.

Original entry on oeis.org

1, 1, 2, 5, 11, 25, 63, 144, 364, 905, 2356
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
A multiset partition is intersecting iff no two parts are disjoint. The dual of a multiset partition is intersecting iff every pair of distinct vertices appear together in some part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,2},{2,2}}
   {{1},{2},{1,2}}
		

Crossrefs

Previous Showing 41-50 of 102 results. Next