A332295
Number of widely recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
Partitions with normal multiplicities are
A317081.
The Heinz numbers of these partitions are a proper superset of
A317492.
Accepting any constant sequence instead of just 1's gives
A332272.
The total (instead of recursive) version is
A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
-
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A325370
Numbers whose prime signature has multiplicities covering an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
For example, the prime indices of 1890 are {1,2,2,2,3,4}, whose multiplicities give the prime signature {1,1,1,3}, and since this does not cover an initial interval (2 is missing), 1890 is not in the sequence.
Cf.
A000009,
A055932,
A056239,
A112798,
A118914,
A317081,
A317089,
A317090,
A319161,
A325326,
A325330,
A325337,
A325369,
A325371.
A317588
Number of uniformly normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 3, 6, 3, 5, 6, 7, 5, 8, 5, 7, 10, 7, 6, 12, 7, 12, 14, 10, 11, 18, 11, 13, 16, 18, 15, 35, 16, 26, 24, 27, 26, 47, 33, 44, 48, 58, 48, 76, 63, 81, 79, 98, 94, 123, 109, 135, 131, 148, 140, 162, 149, 152, 162, 166, 175, 202, 191, 221, 232, 233
Offset: 1
The a(6) = 6 uniformly normal integer partitions are (6), (33), (321), (222), (2211), (111111). Missing from this list are (51), (42), (411), (3111), (21111).
The a(21) = 14 uniformly normal integer partitions (n = 21):
(n),
(777),
(654321),
(4443321), (3333333),
(44432211), (44333211), (44332221),
(4432221111), (4333221111), (4332222111),
(433322211),
(22222221111111),
(111111111111111111111).
-
uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
Table[Length[Select[IntegerPartitions[n],uninrmQ]],{n,0,30}]
A325329
Number of integer partitions of n whose multiplicities appear with distinct multiplicities.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 8, 7, 13, 18, 25, 30, 52, 57, 81, 109, 140, 167, 230, 267, 354, 428, 532, 630, 815, 942, 1166, 1385, 1695, 1966, 2440, 2810, 3422, 4008, 4828, 5630, 6847, 7905, 9527, 11135, 13340, 15498, 18636, 21591, 25769, 30086, 35630, 41379, 49150, 56880
Offset: 0
The a(0) = 1 through a(8) = 13 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (421) (71)
(321) (3211) (431)
(2211) (1111111) (521)
(111111) (2222)
(3221)
(3311)
(4211)
(32111)
(11111111)
For example, in (4,2,1,1), the multiplicities are 1 and 2, and 2 appears 1 time while 1 appears 2 times, so (4,2,1,1) is counted under a(8).
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
A332272
Number of narrowly recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 8, 10, 14, 18, 23, 30, 37, 46, 52, 70, 80, 100, 116, 146, 171, 203, 236, 290, 332, 401, 458, 547, 626, 744, 851, 1004, 1157, 1353, 1553, 1821, 2110, 2434, 2810, 3250, 3741, 4304, 4949, 5661, 6510, 7450, 8501, 9657, 11078, 12506, 14329, 16185
Offset: 0
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
The strict instead of narrow version is
A330937.
The widely normal case is
A332277(n) - 1 for n > 1.
The wide version is
A332295(n) - 1.
Cf.
A000009,
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[Length[qtn]<=1,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A325330
Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0
The a(0) = 1 through a(8) = 16 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (2111) (411) (511) (422)
(11111) (3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
Cf.
A000837,
A055932,
A317081,
A317088,
A317089,
A317090,
A317245,
A320348,
A325331,
A325333,
A325337,
A325370.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]
A325331
Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0
The a(0) = 1 through a(8) = 7 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (3211) (44)
(1111) (222) (1111111) (2222)
(111111) (3221)
(4211)
(32111)
(11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
Cf.
A098859,
A130091,
A317081,
A317090,
A320348,
A325329,
A325330,
A325337,
A325369,
A325370,
A325371.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
A332576
Number of integer partitions of n that are all 1's or whose run-lengths cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 31, 35, 51, 59, 80, 97, 130, 153, 204, 244, 308, 376, 475, 564, 708, 851, 1043, 1247, 1533, 1816, 2216, 2633, 3174, 3766, 4526, 5324, 6376, 7520, 8917, 10479, 12415, 14524, 17134, 20035, 23489, 27423, 32091, 37286, 43512
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
Heinz numbers of these partitions first differ from
A317492 in having 420.
Not counting constant-1 sequences gives
A317081.
-
nQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],nQ]],{n,0,30}]
A317082
Number of integer partitions of n whose multiplicities are weakly decreasing and span an initial interval of positive integers.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 8, 9, 13, 17, 22, 26, 35, 42, 53, 66, 81, 96, 122, 143, 174, 210, 251, 293, 358, 417, 493, 582, 686, 793, 941, 1087, 1267, 1471, 1709, 1961, 2285, 2615, 3013, 3460, 3976, 4523, 5204, 5914, 6747, 7681, 8745, 9884, 11262, 12714, 14393, 16261
Offset: 0
The a(7) = 8 integer partitions are (7), (61), (52), (511), (43), (421), (322), (3211).
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Table[Length[Select[IntegerPartitions[n],And[normalQ[Length/@Split[#]],OrderedQ[Length/@Split[#]]]&]],{n,60}]
A325335
Number of integer partitions of n with adjusted frequency depth 4 whose parts cover an initial interval of positive integers.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 1, 3, 3, 3, 5, 8, 6, 13, 12, 14, 17, 22, 17, 28, 29, 30, 38, 50, 46, 67, 64, 75, 81, 104, 99, 127, 128, 150, 155, 201, 189, 236, 244, 293, 302, 363, 372, 437, 457, 548, 547, 638, 671, 754, 809, 922, 947, 1074, 1144, 1290, 1342, 1515, 1574
Offset: 0
The a(4) = 1 through a(10) = 5 partitions:
(211) (221) (21111) (2221) (22211) (22221) (222211)
(2111) (22111) (221111) (2211111) (322111)
(211111) (2111111) (21111111) (2221111)
(22111111)
(211111111)
Cf.
A000009,
A007862,
A181819,
A182850,
A317081,
A320348,
A323014,
A325280,
A325326,
A325334,
A325387.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==4&]],{n,0,30}]
Comments