A307895
Numbers whose prime exponents, starting from the largest prime factor through to the smallest, form an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 83, 89, 92, 97, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 148, 149, 151, 153, 157, 163, 164, 167, 171, 172, 173
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
11: {5}
12: {1,1,2}
13: {6}
17: {7}
19: {8}
20: {1,1,3}
23: {9}
28: {1,1,4}
29: {10}
31: {11}
37: {12}
41: {13}
43: {14}
44: {1,1,5}
45: {2,2,3}
Cf.
A055932,
A056239,
A098859,
A109298,
A112798,
A130091,
A179269,
A317090,
A325326,
A325337,
A325460.
-
Select[Range[100],Last/@If[#==1,{},FactorInteger[#]]==Range[PrimeNu[#],1,-1]&]
A325370
Numbers whose prime signature has multiplicities covering an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
For example, the prime indices of 1890 are {1,2,2,2,3,4}, whose multiplicities give the prime signature {1,1,1,3}, and since this does not cover an initial interval (2 is missing), 1890 is not in the sequence.
Cf.
A000009,
A055932,
A056239,
A112798,
A118914,
A317081,
A317089,
A317090,
A319161,
A325326,
A325330,
A325337,
A325369,
A325371.
A317589
Heinz numbers of uniformly normal integer partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 150, 151, 157, 163, 167, 169
Offset: 1
Cf.
A055932,
A056239,
A181819,
A182850,
A296150,
A304687,
A304818,
A317089,
A317090,
A317245,
A317246,
A317492,
A317588,
A317590.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
Select[Range[1000],uninrmQ[primeMS[#]]&]
A325369
Numbers with no two prime exponents appearing the same number of times in the prime signature.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1
Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
54: {1,2,2,2}
56: {1,1,1,4}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
76: {1,1,8}
80: {1,1,1,1,3}
88: {1,1,1,5}
For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence.
Cf.
A056239,
A098859,
A112798,
A118914,
A130091,
A317090,
A319161,
A325326,
A325329,
A325331,
A325337,
A325370,
A325371.
A361393
Positive integers k such that 2*omega(k) > bigomega(k).
Original entry on oeis.org
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
The prime indices of 120 are {1,1,1,2,3}, with 3 distinct parts and 5 parts, and 2*3 > 5, so 120 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with 3 distinct parts and 6 parts, and 2*3 is not greater than 6, so 360 is not in the sequence.
These partitions are counted by
A237365.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
Comparing twice the number of distinct parts to the number of parts:
-
isA361393 := proc(n)
if 2*A001221(n) > numtheory[bigomega](n) then
true;
else
false ;
end if:
end proc:
for n from 1 to 100 do
if isA361393(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Mar 21 2023
-
Select[Range[1000],2*PrimeNu[#]>PrimeOmega[#]&]
A381543
Numbers > 1 whose greatest prime index (A061395), number of distinct prime factors (A001221), and greatest prime multiplicity (A051903) are all equal.
Original entry on oeis.org
2, 12, 18, 36, 120, 270, 360, 540, 600, 750, 1080, 1350, 1500, 1680, 1800, 2250, 2700, 3000, 4500, 5040, 5400, 5670, 6750, 8400, 9000, 11340, 11760, 13500, 15120, 22680, 25200, 26250, 27000, 28350, 35280, 36960, 39690, 42000, 45360, 52500, 56700, 58800, 72030
Offset: 1
The terms together with their prime indices begin:
2: {1}
12: {1,1,2}
18: {1,2,2}
36: {1,1,2,2}
120: {1,1,1,2,3}
270: {1,2,2,2,3}
360: {1,1,1,2,2,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
750: {1,2,3,3,3}
1080: {1,1,1,2,2,2,3}
1350: {1,2,2,2,3,3}
1500: {1,1,2,3,3,3}
1680: {1,1,1,1,2,3,4}
1800: {1,1,1,2,2,3,3}
Partitions of this type are counted by
A382302.
A122111 represents partition conjugation in terms of Heinz numbers.
-
Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==PrimeNu[#]==Max@@FactorInteger[#][[All,2]]&]
A317092
Positive integers whose prime multiplicities are weakly decreasing and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92
Offset: 1
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Select[Range[2,100],And[normalQ[FactorInteger[#][[All,2]]],OrderedQ[Reverse[FactorInteger[#][[All,2]]]]]&]
-
is(n) = my (f=factor(n), w=#f~); if (w==0 || f[w,2]!=1, return (0), for (k=1, w-1, if (f[k,2]!=f[k+1,2] && f[k,2]!=1+f[k+1,2], return (0))); return (1)) \\ Rémy Sigrist, Sep 05 2018
A325330
Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0
The a(0) = 1 through a(8) = 16 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (2111) (411) (511) (422)
(11111) (3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
Cf.
A000837,
A055932,
A317081,
A317088,
A317089,
A317090,
A317245,
A320348,
A325331,
A325333,
A325337,
A325370.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]
A339886
Numbers whose prime indices cover an interval of positive integers starting with 2.
Original entry on oeis.org
1, 3, 9, 15, 27, 45, 75, 81, 105, 135, 225, 243, 315, 375, 405, 525, 675, 729, 735, 945, 1125, 1155, 1215, 1575, 1875, 2025, 2187, 2205, 2625, 2835, 3375, 3465, 3645, 3675, 4725, 5145, 5625, 5775, 6075, 6561, 6615, 7875, 8085, 8505, 9375, 10125, 10395, 10935
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2}
9: {2,2}
15: {2,3}
27: {2,2,2}
45: {2,2,3}
75: {2,3,3}
81: {2,2,2,2}
105: {2,3,4}
135: {2,2,2,3}
225: {2,2,3,3}
243: {2,2,2,2,2}
315: {2,2,3,4}
375: {2,3,3,3}
405: {2,2,2,2,3}
525: {2,3,3,4}
675: {2,2,2,3,3}
729: {2,2,2,2,2,2}
735: {2,3,4,4}
945: {2,2,2,3,4}
The version starting at 1 is
A055932.
The partitions with these Heinz numbers are counted by
A264396.
A000009 counts partitions covering an initial interval.
A000070 counts partitions with a selected part.
A016945 lists numbers with smallest prime index 2.
A034296 counts gap-free (or flat) partitions.
A073491 lists numbers with gap-free prime indices.
A325240 lists numbers with smallest prime multiplicity 2.
Cf.
A001223,
A001522,
A006128,
A007052,
A124010,
A257989,
A257993,
A264401,
A317090,
A317589,
A339737.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Select[Range[100],normQ[primeMS[#]-1]&]
A317091
Positive integers whose prime multiplicities are weakly increasing and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 102
Offset: 1
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Select[Range[2,150],And[normalQ[FactorInteger[#][[All,2]]],OrderedQ[FactorInteger[#][[All,2]]]]&]
Comments