cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A323792 Number of non-isomorphic weight-n multisets of sets of sets.

Original entry on oeis.org

1, 1, 4, 11, 43, 145, 614, 2549
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 11 multiset partitions:
  {{1}}  {{12}}      {{123}}
         {{1}{2}}    {{1}{12}}
         {{1}}{{1}}  {{1}{23}}
         {{1}}{{2}}  {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323793 Number of non-isomorphic weight-n multisets of multisets of sets.

Original entry on oeis.org

1, 1, 5, 15, 65, 240, 1090, 4845
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic multiset partitions of set multipartitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partitions:
  {{1}}  {{12}}      {{123}}
         {{1}{1}}    {{1}{12}}
         {{1}{2}}    {{1}{23}}
         {{1}}{{1}}  {{1}{1}{1}}
         {{1}}{{2}}  {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323794 Number of non-isomorphic weight-n multisets of sets of multisets.

Original entry on oeis.org

1, 1, 5, 17, 77, 318, 1561, 7667
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2019

Keywords

Comments

Also the number of non-isomorphic set multipartitions of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 multiset partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{2}}    {{123}}
         {{1}}{{1}}  {{1}{11}}
         {{1}}{{2}}  {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A318560 Number of combinatory separations of a multiset whose multiplicities are the prime indices of n in weakly decreasing order.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 3, 8, 7, 7, 8, 11, 12, 15, 5, 15, 17, 22, 14, 27, 19, 30, 13, 27, 30, 33, 26, 42, 37, 56, 7, 44, 45, 51, 34, 77, 67, 72, 25
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. The type of a multiset is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223. A (headless) combinatory separation of a multiset m is a multiset of normal multisets {t_1,...,t_k} such that there exist multisets {s_1,...,s_k} with multiset union m and such that s_i has type t_i for each i = 1...k.
The prime indices of n are the n-th row of A296150.

Examples

			The a(18) = 17 combinatory separations of {1,1,2,2,3}:
  {11223}
  {1,1122} {1,1123} {1,1223} {11,112} {12,112} {12,122} {12,123}
  {1,1,112} {1,1,122} {1,1,123} {1,11,11} {1,11,12} {1,12,12}
  {1,1,1,11} {1,1,1,12}
  {1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union[Sort/@Map[normize,mps[nrmptn[n]],{2}]]],{n,20}]

A318562 Number of combinatory separations of strongly normal multisets of weight n with strongly normal parts.

Original entry on oeis.org

1, 4, 10, 32, 80, 239, 605, 1670, 4251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    strnormQ[m_]:=OrderedQ[Length/@Split[m],GreaterEqual];
    Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@strnormQ/@#[[2]]&]],{n,6}]

A318563 Number of combinatory separations of strongly normal multisets of weight n.

Original entry on oeis.org

1, 4, 10, 33, 85, 272, 730, 2197, 6133
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}]],{n,7}]

A324930 Total weight of the multiset of multisets of multisets with MMM number n. Totally additive with a(prime(n)) = A302242(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 3, 2, 2, 1, 1, 0, 3, 1, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The finite multiset of finite multisets of finite multisets of positive integers with MMM number n is obtained by factoring n into prime numbers, then factoring each of their prime indices into prime numbers, then factoring each of their prime indices into prime numbers, and finally taking their prime indices.

Examples

			The sequence of all finite multisets of finite multisets of finite multisets of positive integers begins (o is the empty multiset):
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((1)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((1)))
  11: (((2)))
  12: (oo(o))
  13: ((o(1)))
  14: (o(oo))
  15: ((o)((1)))
  16: (oooo)
  17: (((11)))
  18: (o(o)(o))
  19: ((ooo))
  20: (oo((1)))
		

Crossrefs

Programs

  • Mathematica
    fi[n_]:=If[n==1,{},FactorInteger[n]];
    Table[Total[Cases[fi[n],{p_,k_}:>k*Total[Cases[fi[PrimePi[p]],{q_,j_}:>j*PrimeOmega[PrimePi[q]]]]]],{n,60}]

A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2019

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   4   2
   0  10   8   3
   0  33  48  18   5
   0  91 204 118  32   7
   0 298 959 743 266  58  11
For example, row n = 3 counts the following multiset partitions:
  {{111}}      {{1}}{{11}}    {{1}}{{1}}{{1}}
  {{112}}      {{1}}{{12}}    {{1}}{{1}}{{2}}
  {{123}}      {{1}}{{23}}    {{1}}{{2}}{{3}}
  {{1}{11}}    {{2}}{{11}}
  {{1}{12}}    {{1}}{{1}{1}}
  {{1}{23}}    {{1}}{{1}{2}}
  {{2}{11}}    {{1}}{{2}{3}}
  {{1}{1}{1}}  {{2}}{{1}{1}}
  {{1}{1}{2}}
  {{1}{2}{3}}
		

Crossrefs

Row sums are A318566.
Column k = 1 is A007716 (for n > 0).
Column k = n is A000041.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
If this is the 3-dimensional version, the 2-dimensional version is A317533.
See A330473 for a variation.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))}
    M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 17 2023

A318816 Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			Tetrangle begins:
  1   2     3        5             7
      2 2   4 4     14 14         28 28
            3 4 3    9 20  9      33 80 33
                     5 14  9  5   16 68 52 16
                                   7 28 33 16  7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
  {{{1}},{{1},{1,1}}}  {{{1,1}},{{1},{1}}}
  {{{1}},{{1},{1,2}}}  {{{1,1}},{{1},{2}}}
  {{{1}},{{1},{2,2}}}  {{{1,1}},{{2},{2}}}
  {{{1}},{{1},{2,3}}}  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,1}}}  {{{1,2}},{{1},{1}}}
  {{{1}},{{2},{1,2}}}  {{{1,2}},{{1},{2}}}
  {{{1}},{{2},{1,3}}}  {{{1,2}},{{1},{3}}}
  {{{1}},{{2},{3,4}}}  {{{1,2}},{{3},{4}}}
  {{{2}},{{1},{1,1}}}  {{{2,3}},{{1},{1}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
		

Crossrefs

A330473 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 3, 8, 10, 0, 5, 28, 38, 33, 0, 7, 56, 146, 152, 91, 0, 11, 138, 474, 786, 628, 298, 0, 15, 268, 1388, 3117, 3808, 2486, 910, 0, 22, 570, 3843, 11830, 19147, 18395, 9986, 3017, 0, 30, 1072, 10094, 40438, 87081, 110164, 86388, 39889, 9945
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2019

Keywords

Comments

As an alternative description, T(n,k) is the number of non-isomorphic multisets of nonempty multisets of nonempty multisets with n leaves whose multiset union consists of k multisets.

Examples

			Triangle begins:
   1
   0   1
   0   2   4
   0   3   8  10
   0   5  28  38  33
   0   7  56 146 152  91
   0  11 138 474 786 628 298
For example, row n = 3 counts the following multiset partitions:
  {{111}}  {{1}{11}}    {{1}{1}{1}}
  {{112}}  {{1}{12}}    {{1}{1}{2}}
  {{123}}  {{1}{23}}    {{1}{2}{3}}
           {{2}{11}}    {{1}}{{1}{1}}
           {{1}}{{11}}  {{1}}{{1}{2}}
           {{1}}{{12}}  {{1}}{{2}{3}}
           {{1}}{{23}}  {{2}}{{1}{1}}
           {{2}}{{11}}  {{1}}{{1}}{{1}}
                        {{1}}{{1}}{{2}}
                        {{1}}{{2}}{{3}}
		

Crossrefs

Row sums are A318566.
Column k = 1 is A000041 (for n > 0).
Column k = n is A007716.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
The 2-dimensional version is A317533.
See A330472 for a variation.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))}
    M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
    { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023

Extensions

Terms a(36) and beyond from Andrew Howroyd, Jan 18 2023
Previous Showing 11-20 of 23 results. Next