A323766
Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.
Original entry on oeis.org
1, 1, 4, 5, 12, 9, 25, 17, 42, 39, 64, 58, 132, 103, 173, 200, 303, 299, 491, 492, 756, 832, 1122, 1257, 1858, 1975, 2646, 3083, 4057, 4567, 6118, 6844, 8913, 10265, 12912, 14931, 19089, 21639, 27003, 31397, 38830, 44585, 55138, 63263, 77371, 89585, 108076
Offset: 0
The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6:
((6))
((52))
((42))
((33))
((3)(3))
((3))((3))
((411))
((321))
((222))
((2)(2)(2))
((2))((2))((2))
((3111))
((2211))
((21)(21))
((21))((21))
((21111))
((111111))
((111)(111))
((11)(11)(11))
((111))((111))
((11))((11))((11))
((1)(1)(1)(1)(1)(1))
((1)(1)(1))((1)(1)(1))
((1)(1))((1)(1))((1)(1))
((1))((1))((1))((1))((1))((1))
Cf.
A000005,
A000041,
A000837,
A001970,
A034729,
A047968,
A306017,
A319066,
A323764,
A323765,
A323774.
-
Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
-
a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ Michel Marcus, Jan 28 2019
A323348
Number of integer partitions of n whose parts cannot be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 6, 13, 17, 27, 36, 54, 66, 99, 128, 169, 221, 295, 367, 488, 610, 779, 993, 1253, 1525, 1955, 2426, 2986, 3684, 4563, 5519, 6840, 8298, 10097, 12298, 14874, 17716, 21635, 26002, 31105, 37081, 44581, 52916, 63259, 74852, 88703, 105543, 124752, 145740, 173522, 203999, 239737, 280424, 329929
Offset: 0
The a(8) = 17 integer partitions:
(53), (62), (71),
(332), (422), (431), (521), (611),
(3221), (4211), (5111),
(22211), (32111), (41111),
(221111), (311111),
(2111111).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
Table[Length[Select[IntegerPartitions[n],Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]
A323435
Number of rectangular plane partitions of n with no repeated rows or columns.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 8, 13, 15, 28, 33, 52, 69, 101, 133, 202, 256, 369, 506, 688, 935, 1295, 1736, 2355, 3184, 4284, 5745, 7722, 10281, 13691, 18316, 24168, 32058, 42389, 55915, 73542, 96753, 126709, 166079, 217017, 283258
Offset: 0
The a(7) = 13 plane partitions:
[7] [4 3] [5 2] [6 1] [4 2 1]
.
[6] [5] [3 2] [4 1] [4] [2 2] [3 1]
[1] [2] [1 1] [1 1] [3] [2 1] [2 1]
.
[4]
[2]
[1]
-
Table[Sum[Length[Select[Union[Tuples[IntegerPartitions[#,{k}]&/@ptn]],And[UnsameQ@@#,UnsameQ@@Transpose[#],And@@(OrderedQ[#,GreaterEqual]&/@Transpose[#])]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,20}]
A358835
Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.
Original entry on oeis.org
1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0
The a(1) = 1 through a(6) = 17 multiset partitions:
{1} {2} {3} {4} {5} {6}
{11} {12} {13} {14} {15}
{1}{1} {111} {22} {23} {24}
{1}{1}{1} {112} {113} {33}
{1111} {122} {114}
{2}{2} {1112} {123}
{11}{11} {11111} {222}
{1}{1}{1}{1} {1}{1}{1}{1}{1} {1113}
{1122}
{3}{3}
{11112}
{111111}
{12}{12}
{2}{2}{2}
{111}{111}
{11}{11}{11}
{1}{1}{1}{1}{1}{1}
The version for set partitions is
A327899.
For distinct instead of constant lengths and sums we have
A358832.
The version for twice-partitions is
A358833.
A001970 counts multiset partitions of integer partitions.
-
Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
-
P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022
A306318
Number of square twice-partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 5, 10, 12, 19, 24, 39, 49, 73, 104, 151, 212, 317, 443, 638, 936, 1296, 1841, 2635, 3641, 5069, 7176, 9884, 13614, 19113, 26162, 36603, 50405, 70153, 96176, 135388, 184753, 257882, 353587, 494653, 671992, 934905, 1272195, 1762979, 2389255
Offset: 0
The a(10) = 19 square twice-partitions:
((ten)) ((32)(32)) ((211)(111)(111))
((32)(41))
((33)(22))
((33)(31))
((41)(32))
((41)(41))
((42)(22))
((42)(31))
((43)(21))
((44)(11))
((51)(22))
((51)(31))
((52)(21))
((53)(11))
((61)(21))
((62)(11))
((71)(11))
Cf.
A000219,
A001970,
A063834 (twice-partitions),
A089299 (square plane partitions),
A279787,
A305551,
A306017,
A306319 (rectangular twice-partitions),
A319066,
A323429,
A323531 (square partitions of partitions).
-
Table[Sum[Length[Union@@(Tuples[IntegerPartitions[#,{k}]&/@#]&/@IntegerPartitions[n,{k}])],{k,0,Sqrt[n]}],{n,0,20}]
A320323
Numbers whose product of prime indices (A003963) is a perfect power and where each prime index has the same number of prime factors, counted with multiplicity.
Original entry on oeis.org
7, 9, 19, 23, 25, 27, 49, 53, 81, 97, 103, 121, 125, 131, 151, 161, 169, 225, 227, 243, 289, 311, 343, 361, 419, 529, 541, 625, 661, 679, 691, 719, 729, 827, 841, 961, 1009, 1089, 1127, 1159, 1183, 1193, 1321, 1331, 1369, 1427, 1543, 1589, 1619, 1681, 1849
Offset: 1
The terms together with their corresponding multiset multisystems (A302242):
7: {{1,1}}
9: {{1},{1}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
81: {{1},{1},{1},{1}}
97: {{3,3}}
103: {{2,2,2}}
121: {{3},{3}}
125: {{2},{2},{2}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
225: {{1},{1},{2},{2}}
Cf.
A000720,
A001222,
A003963,
A056239,
A064573,
A112798,
A302242,
A305551,
A306017,
A319056,
A319066,
A319071,
A320324,
A320325.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And[GCD@@FactorInteger[Times@@primeMS[#]][[All,2]]>1,SameQ@@PrimeOmega/@primeMS[#]]&]
-
is(n) = my (f=factor(n), pi=apply(primepi, f[,1]~)); #Set(apply(bigomega, pi))==1 && ispower(prod(i=1, #pi, pi[i]^f[i,2])) \\ Rémy Sigrist, Oct 11 2018
A323765
Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.
Original entry on oeis.org
1, 1, 3, 5, 9, 10, 22, 20, 37, 44, 65, 68, 127, 119, 182, 226, 307, 335, 511, 544, 782, 913, 1171, 1359, 1908, 2121, 2738, 3286, 4174, 4821, 6305, 7182, 9108, 10739, 13195, 15548, 19465, 22397, 27477, 32423, 39448, 45843, 55995, 64871, 78343, 91761, 109325
Offset: 0
The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions:
((1)) ((2)) ((3)) ((4)) ((5))
((11)) ((21)) ((31)) ((41))
((1)(1)) ((111)) ((22)) ((32))
((1)(1)(1)) ((211)) ((311))
((1))((1)(1)) ((1111)) ((221))
((2)(2)) ((2111))
((11)(11)) ((11111))
((1)(1)(1)(1)) ((1)(1)(1)(1)(1))
((1))((1)(1)(1)) ((1))((1)(1)(1)(1))
((1)(1))((1)(1)(1))
Cf.
A000009,
A000041,
A001970,
A034729,
A047968,
A050343,
A316980,
A319066,
A323764,
A323766,
A323774.
-
Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
Comments