cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A337376 Primorial deflation (numerator) of Doudna-tree.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 9, 8, 7, 10, 5, 6, 25, 9, 27, 16, 11, 14, 21, 20, 7, 5, 15, 12, 49, 50, 25, 9, 125, 27, 81, 32, 13, 22, 33, 28, 55, 21, 63, 40, 11, 14, 7, 10, 35, 15, 45, 24, 121, 98, 147, 100, 49, 25, 25, 18, 343, 250, 125, 27, 625, 81, 243, 64, 17, 26, 39, 44, 65, 33, 99, 56, 91, 110, 55, 42, 275, 63, 189, 80, 13, 22
Offset: 0

Views

Author

Keywords

Comments

Tree with both numerators (this sequence) and denominators (A337377) shown starts as:
1/1
|
2
-
1
3 / \ 4
- ................. ................. -
2 1
5 / \ 3 9 / \ 8
- ....... ....... - - ....... ....... -
3 1 4 1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 5 6 25 9 27 16
- -- - - -- - -- --
5 3 2 1 9 2 8 1
/ \ / \ / \ / \ / \ / \ / \ / \
11 14 21 20 7 5 15 12 49 50 25 9 125 27 81 32
-- -- -- -- - - -- -- -- -- -- - --- -- -- --
7 5 10 3 3 1 4 1 25 9 6 1 27 4 16 1
etc.

Crossrefs

A005940, A319626, A337375 are used in a formula defining this sequence.
Cf. A064989.
Cf. A337377 (denominators).
A000265, A001222, A003961, A007814, A337821 are used to express relationship between terms of this sequence.
Cf. also A329886, A346096.

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &@ Function[p, Times @@ Flatten@ Table[Prime[Count[Flatten[#], 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]@ Partition[Split[Join[IntegerDigits[# - 1, 2], {2}]], 2] &, 82] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A337376(n) = A319626(A005940(1+n));

Formula

a(n) = A319626(A005940(1+n)).
a(n) = A005940(1+n) / A337375(n).
a(2*n) = A003961(a(n)).
If A007814(n+1) < A337821(n+1) then a(2*n+1) = a(n), otherwise a(2*n+1) = 2 * a(n).
If A337377(n) mod 2 = 0 then a(2*n+1) = a(n), otherwise a(2*n+1) = 2 * a(n).
A000265(a(2*n+1)) = A000265(a(n)).
A001222(a(2*n)) = A001222(A337377(2*n)) = A001222(a(n)).
A001222(a(2*n+1)) - A001222(A337377(2*n+1)) = 1 + A001222(a(n)) - A001222(A337377(n)).

A342012 Primorial deflation of the n-th colossally abundant number: the unique integer k such that A108951(k) = A004490(n).

Original entry on oeis.org

2, 3, 6, 10, 20, 30, 42, 84, 132, 156, 312, 468, 780, 1020, 1140, 1380, 2760, 3480, 3720, 5208, 7812, 9324, 10332, 10836, 21672, 23688, 26712, 29736, 49560, 51240, 56280, 59640, 61320, 96360, 104280, 208560, 219120, 328680, 352440, 384120, 453960, 472680, 482040, 500760, 510120, 528840, 594360, 613080, 641160, 650520, 1301040
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2021

Keywords

Comments

In contrast to A329902, this sequence is monotonic, because each term is obtained from the previous, either by multiplying it by 2, or by "bumping" one [or hypothetically: two] of its prime factors one step up (i.e., replacing it with the next larger prime), and both operations are guaranteed to make the number larger.

Crossrefs

Programs

  • PARI
    v073751 = readvec("b073751_to.txt");
    A073751(n) = v073751[n];
    A004490list(v073751) = { my(v=vector(#v073751)); v[1] = 2; for(n=2,#v,v[n] = v073751[n]*v[n-1]); (v); };
    v004490 = A004490list(v073751);
    A004490(n) = v004490[n];
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A342012(n) = A319626(A004490(n));

Formula

a(n) = A319626(A004490(n)) = A329900(A004490(n)).
a(n) = A005940(1+A342013(n)).

A346108 a(n) = A276085(A108951(A346096(n))), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)).

Original entry on oeis.org

1, 3, 9, 6, 39, 18, 249, 9, 39, 78, 2559, 36, 32589, 498, 234, 18, 543099, 78, 10242789, 156, 1494, 5118, 233335659, 57, 996, 65178, 258, 996, 6703028889, 405, 207263519019, 42, 15354, 1086198, 6612, 156, 7628001653829, 20485578, 195534, 249, 311878265181039, 2559, 13394639596851069, 10236, 1245, 466671318, 628284422185342479
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A108951(n) + A346109(n).

A346106 a(n) = A108951(A346096(n)), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)).

Original entry on oeis.org

2, 6, 30, 36, 210, 900, 2310, 30, 210, 44100, 30030, 810000, 510510, 5336100, 85766121000000, 900, 9699690, 44100, 223092870, 1944810000, 151939915084881000000, 901800900, 6469693230, 189000, 28473963210000, 260620460100, 69300, 28473963210000, 200560490130, 4492511100000, 7420738134810, 1260, 733384949590939374729000000
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A324886(n) * A346107(n).

A348994 a(n) = A003961(n) / gcd(n, A003961(n)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 5, 11, 27, 25, 21, 13, 15, 17, 33, 7, 81, 19, 25, 23, 63, 55, 39, 29, 45, 49, 51, 125, 99, 31, 7, 37, 243, 65, 57, 11, 25, 41, 69, 85, 189, 43, 55, 47, 117, 35, 87, 53, 135, 121, 147, 95, 153, 59, 125, 91, 297, 115, 93, 61, 21, 67, 111, 275, 729, 119, 65, 71, 171, 145, 33, 73, 75, 79, 123, 49, 207
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numerator of ratio A003961(n) / n. This ratio is fully multiplicative, and a(n) / A348990(n) = A319626(A003961(n)) / A319627(A003961(n)) gives it in its lowest terms.

Crossrefs

Cf. A003961, A319626, A319627, A348990 (denominators).

Programs

  • Mathematica
    Array[#2/GCD[##] & @@ {#, If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 76] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348994(n) = (A003961(n) / gcd(n, A003961(n)));

Formula

a(n) = A003961(n) / gcd(n, A003961(n)).
a(n) = A319626(A003961(n)).

A349176 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

135, 285, 435, 455, 855, 885, 1185, 1287, 1305, 1335, 1425, 1435, 1485, 1635, 2235, 2275, 2295, 2655, 2685, 2905, 2985, 3105, 3135, 3185, 3311, 3395, 3435, 3555, 3585, 4005, 4035, 4185, 4425, 4785, 4865, 4905, 4995, 5385, 5685, 5805, 5835, 5845, 5925, 6135, 6237, 6335, 6345, 6585, 6675, 6735, 7125, 7155, 7175, 7185
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Examples

			For n = 135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, A003961(135) = 5^3 * 7 = 875, and gcd(135,875) = gcd(240,875) = 5, which is larger than 1, therefore 135 is included in the sequence.
		

Crossrefs

Intersection of A104210 and A349174, or equally, intersection of A349166 and A349174.
Subsequence of A372567.

Programs

  • Mathematica
    Select[Range[1, 7200, 2], And[#1/#2 == #1/#3, #2 > 1] & @@ {#3, GCD[#1, #3], GCD[#2, #3]} & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349176(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (t>1)&&(gcd(u,sigma(n))==t));

A337478 Primorial deflation of A336389.

Original entry on oeis.org

1, 3, 20, 38, 159, 749, 1337
Offset: 0

Views

Author

Antti Karttunen, Aug 29 2020

Keywords

Crossrefs

Formula

a(n) = A319626(A336389(n)) = A329900(A336389(n)).
For all n >= 0, A337474(a(n)) >= n and a(n) >= A337476(n).

A342013 Position of the n-th colossally abundant number in A329886, the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 2, 5, 9, 19, 21, 37, 75, 139, 267, 535, 539, 555, 1067, 2091, 4139, 8279, 16471, 32855, 32919, 32923, 65691, 131227, 262299, 524599, 1048887, 2097463, 4194615, 4194647, 8388951, 16777559, 33554775, 67109207, 67109463, 134218327, 268436655, 536872111, 536872119, 1073743031, 2147484855, 2147485879, 4294969527, 8589936823
Offset: 1

Views

Author

Keywords

Comments

a(n) is the unique integer k such that A329886(k) = A004490(n).
Like A342012, also this sequence is monotonic. Proof: the doubling step corresponds here to step *2 + 1, and "bumping up" some of the prime factors likewise results a larger A156552-code, thus both steps keep the result growing.
The binary length of these numbers (A070939, = 1+A000523) grows by 0 or 1 at each step, thus the next colossally abundant number is always found on either on the same row (right of the current CA-number), or the next row of A329886, the row immediately below. The next CA-number will be on the same row only when its factorization contains neither a new prime nor yet another instance of prime 2.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A342013(n) = A156552(A342012(n)); \\ Uses also code from A342012.

Formula

A348990 a(n) = n / gcd(n, A003961(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 4, 13, 14, 3, 16, 17, 6, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 5, 4, 37, 38, 39, 40, 41, 14, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 22, 67, 68, 69, 10, 71, 8, 73, 74, 15, 76, 7, 26, 79, 80, 81, 82, 83, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Denominator of ratio A003961(n) / n. This ratio is fully multiplicative, and A348994(n) / a(n) = A319626(A003961(n)) / A319627(A003961(n)) gives it in its lowest terms.

Crossrefs

Cf. A000035, A000961, A002110, A003961, A319626, A319627, A319630 (fixed points), A322361, A349169 (where equal to A348992).
Cf. A348994 (numerators).

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {#, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348990(n) = (n/gcd(n, A003961(n)));

Formula

a(n) = n / A322361(n) = n / gcd(n, A003961(n)).
a(n) = A319627(A003961(n)).
For all odd numbers n, a(n) = A003961(A319627(n)).
For all n >= 1, A000035(A348990(n)) = A000035(n). [Preserves the parity]

A330743 a(n) is the first term k of A329902 for which A056239(k) = n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 40, 60, 84, 168, 336, 528, 792, 936, 1872, 2448, 3060, 4560, 4788, 8280, 15456, 23184, 29232, 31248, 62496, 74592, 124320, 137760, 144480, 157920, 315840, 356160, 559680, 623040, 644160, 966240, 1061280, 1124640, 1686960, 1734480, 2049840, 2218320, 2330640, 2499120, 4165200, 4539600, 4726800, 4820400
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2020

Keywords

Comments

Note that in contrast to A330744 this is not monotonic. The first point where a(n) > a(n+1) occurs is at a(120) = 5481774144 > a(121) = 5452302240. See also comment in A328521, whose primorial deflation this sequence is.
a(n-1) differs from A330744(n) at n = 17, 19, 21, 51, 52, 55, 56, 57, 58, 59, 60, 61, ...

Crossrefs

Primorial deflation of A328521.
Cf. also A330744.

Programs

  • PARI
    A330743(n) = { for(k=1,oo,if(A056239(A329902(k))==n,return(A329902(k)))); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902 as prepared by Michael De Vlieger.
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330743list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,v329902[i]))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330743 = A330743list();
    A330743(n) = v330743[1+n];
    for(n=0,#v330743-1,write("b330743.txt", n, " ", A330743(n)));

Formula

a(n) = A329902(min{i: A056239(A329902(i))==n}).
a(n) = A329902(A330748(n)).
a(n) = A329900(A328521(n)) = A319626(A328521(n)).
Previous Showing 21-30 of 36 results. Next