cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A304996 Number of unlabeled antichains of finite sets spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 6, 24, 166, 3266, 826308
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 24 antichains:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2}}
{{2},{1,2}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,2}}
{{2},{3},{1,3}}
{{2},{3},{1,2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{2},{3},{1,3},{2,3}}
{{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A321679 Number of non-isomorphic weight-n antichains (not necessarily strict) of sets.

Original entry on oeis.org

1, 1, 3, 5, 12, 19, 45, 75, 170, 314, 713
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 19 antichains:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}        {{1,2,3,4,5}}
         {{1},{1}}  {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3,4,5}}
         {{1},{2}}  {{1},{1},{1}}  {{1},{2,3,4}}      {{1,2},{3,4,5}}
                    {{1},{2},{2}}  {{1,2},{3,4}}      {{1,4},{2,3,4}}
                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{1},{2,3,4}}
                                   {{1},{1},{2,3}}    {{1},{2,3},{2,3}}
                                   {{1},{2},{3,4}}    {{1},{2},{3,4,5}}
                                   {{1},{1},{1},{1}}  {{1},{2,3},{4,5}}
                                   {{1},{1},{2},{2}}  {{1},{2,4},{3,4}}
                                   {{1},{2},{2},{2}}  {{1},{1},{1},{2,3}}
                                   {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}
                                                      {{1},{1},{1},{1},{1}}
                                                      {{1},{1},{2},{2},{2}}
                                                      {{1},{2},{2},{2},{2}}
                                                      {{1},{2},{2},{3},{3}}
                                                      {{1},{2},{3},{3},{3}}
                                                      {{1},{2},{3},{4},{4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

A327062 Number of antichains of distinct sets covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 5, 16, 81, 2595
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 16 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1,2}}    {{3}}
             {{1},{2}}  {{1,2}}
                        {{1,3}}
                        {{2,3}}
                        {{1},{2}}
                        {{1,2,3}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1},{2,3}}
                        {{2},{1,3}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The covering case is A319639.
The non-isomorphic multiset partition version is A319721.
The BII-numbers of these set-systems are the intersection of A326910 and A326853.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A327018.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

A304999 Number of labeled antichains of finite sets spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 5, 53, 1577, 212137, 496946349, 309068823607069, 14369391923126237496803793, 146629927766168786109802623629262590838145873
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 5 antichains:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Exponential transform of A304985.
Inverse binomial transform of A305000. - Aniruddha Biswas, May 12 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 12 2024

A320449 Number of antichains of sets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 18, 24, 39, 58, 92, 131, 206
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Examples

			The a(1) = 1 through a(7) = 24 antichains:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1},{1}}  {{1,2}}        {{1,3}}            {{1,4}}
                    {{1},{2}}      {{1},{3}}          {{2,3}}
                    {{1},{1},{1}}  {{2},{2}}          {{1},{4}}
                                   {{1},{1},{2}}      {{2},{3}}
                                   {{1},{1},{1},{1}}  {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1},{1}}
.
  {{6}}                      {{7}}
  {{1,5}}                    {{1,6}}
  {{2,4}}                    {{2,5}}
  {{1,2,3}}                  {{3,4}}
  {{1},{5}}                  {{1,2,4}}
  {{2},{4}}                  {{1},{6}}
  {{3},{3}}                  {{2},{5}}
  {{1},{2,3}}                {{3},{4}}
  {{2},{1,3}}                {{1},{2,4}}
  {{3},{1,2}}                {{2},{1,4}}
  {{1},{1},{4}}              {{4},{1,2}}
  {{1,2},{1,2}}              {{1},{1},{5}}
  {{1},{2},{3}}              {{1,2},{1,3}}
  {{2},{2},{2}}              {{1},{2},{4}}
  {{1},{1},{1},{3}}          {{1},{3},{3}}
  {{1},{1},{2},{2}}          {{2},{2},{3}}
  {{1},{1},{1},{1},{2}}      {{1},{1},{2,3}}
  {{1},{1},{1},{1},{1},{1}}  {{1},{1},{1},{4}}
                             {{1},{1},{2},{3}}
                             {{1},{2},{2},{2}}
                             {{1},{1},{1},{1},{3}}
                             {{1},{1},{1},{2},{2}}
                             {{1},{1},{1},{1},{1},{2}}
                             {{1},{1},{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}]

A320353 Number of antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 36, 56, 107, 175, 311, 505, 887
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 17 antichains:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{2}}      {{1,1,2}}          {{1,1,3}}
                    {{1},{1},{1}}  {{1},{3}}          {{1,2,2}}
                                   {{2},{2}}          {{1},{4}}
                                   {{1,1,1,1}}        {{2},{3}}
                                   {{2},{1,1}}        {{1,1,1,2}}
                                   {{1,1},{1,1}}      {{1},{2,2}}
                                   {{1},{1},{2}}      {{3},{1,1}}
                                   {{1},{1},{1},{1}}  {{1,1,1,1,1}}
                                                      {{1,1},{1,2}}
                                                      {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{2},{1,1,1}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],antiQ]],{n,8}]

A320355 Number of connected antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 3, 4, 8, 9, 19, 24, 45, 71, 118, 194, 335
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 9 clutters:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{1},{1}}  {{1,1,2}}          {{1,1,3}}
                                   {{2},{2}}          {{1,2,2}}
                                   {{1,1,1,1}}        {{1,1,1,2}}
                                   {{1,1},{1,1}}      {{1,1,1,1,1}}
                                   {{1},{1},{1},{1}}  {{1,1},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[Length[csm[#]]==1,antiQ[#]]&]],{n,8}]

A320356 Number of strict connected antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 22, 35, 62, 98, 171, 277
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(6) = 13 clutters:
  {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
         {{1,1}}  {{1,2}}    {{1,3}}      {{1,4}}        {{1,5}}
                  {{1,1,1}}  {{2,2}}      {{2,3}}        {{2,4}}
                             {{1,1,2}}    {{1,1,3}}      {{3,3}}
                             {{1,1,1,1}}  {{1,2,2}}      {{1,1,4}}
                                          {{1,1,1,2}}    {{1,2,3}}
                                          {{1,1,1,1,1}}  {{2,2,2}}
                                          {{1,1},{1,2}}  {{1,1,1,3}}
                                                         {{1,1,2,2}}
                                                         {{1,1,1,1,2}}
                                                         {{1,1},{1,3}}
                                                         {{1,1,1,1,1,1}}
                                                         {{1,2},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]

A320798 Number of non-isomorphic weight-n connected antichains of non-constant multisets with multiset density -1.

Original entry on oeis.org

0, 1, 2, 5, 9, 24, 51, 134, 328, 868
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 24 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}
          {{123}}  {{1222}}    {{12222}}    {{112222}}
                   {{1233}}    {{12233}}    {{112233}}
                   {{1234}}    {{12333}}    {{122222}}
                   {{13}{23}}  {{12344}}    {{122333}}
                               {{12345}}    {{123333}}
                               {{12}{233}}  {{123344}}
                               {{13}{233}}  {{123444}}
                               {{14}{234}}  {{123455}}
                                            {{123456}}
                                            {{112}{233}}
                                            {{122}{233}}
                                            {{12}{2333}}
                                            {{123}{344}}
                                            {{124}{344}}
                                            {{125}{345}}
                                            {{13}{2233}}
                                            {{13}{2333}}
                                            {{13}{2344}}
                                            {{133}{233}}
                                            {{14}{2344}}
                                            {{15}{2345}}
                                            {{13}{24}{34}}
                                            {{14}{24}{34}}
		

Crossrefs

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024
Previous Showing 11-20 of 35 results. Next