cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A321346 Number of integer partitions of n containing no prime powers > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 11, 14, 16, 19, 19, 25, 26, 31, 34, 40, 41, 52, 54, 63, 69, 81, 86, 105, 109, 126, 137, 160, 169, 201, 211, 242, 264, 303, 320, 375, 396, 453, 490, 557, 590, 682, 726, 823, 888, 1002, 1065, 1219
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

First differs from A285798 at a(30) = 52, A285798(30) = 51.

Examples

			The a(20) = 14 integer partitions:
  (20)
  (10,10)
  (14,6)
  (18,1,1)
  (12,6,1,1)
  (6,6,6,1,1)
  (10,6,1,1,1,1)
  (15,1,1,1,1,1)
  (14,1,1,1,1,1,1)
  (12,1,1,1,1,1,1,1,1)
  (6,6,1,1,1,1,1,1,1,1)
  (10,1,1,1,1,1,1,1,1,1,1)
  (6,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A322526 Number of integer partitions of n whose product of parts is a squarefree number.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 8, 9, 10, 13, 15, 17, 21, 24, 27, 30, 36, 41, 46, 51, 57, 65, 73, 82, 90, 101, 109, 121, 134, 150, 164, 177, 193, 214, 232, 253, 278, 300, 324, 351, 386, 419, 452, 484, 521, 563, 610, 658, 706, 758, 809, 868, 938, 1006, 1071, 1140, 1220, 1307
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

The parts of such a partition must also be squarefree and distinct except for any number of 1's.

Examples

			The a(8) = 9 partitions are (53), (71), (521), (611), (5111), (32111), (311111), (2111111), (11111111). Missing from this list are (8), (62), (44), (431), (422), (4211), (41111), (332), (3311), (3221), (2222), (22211), (221111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SquareFreeQ[Times@@#]&]],{n,30}]

A319071 Number of integer partitions of n whose product of parts is a perfect power and whose parts all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 2, 0, 3, 2, 3, 0, 4, 1, 4, 3, 7, 1, 7, 1, 8, 6, 8, 0, 15, 5, 12, 6, 15, 4, 22, 4, 24, 12, 22, 8, 35, 7, 30, 16, 42, 9, 50, 9, 50, 30, 53, 7, 79, 22, 72, 33, 87, 21, 109, 26, 111, 55, 117, 24, 168, 40, 149, 65, 178, 59
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

The positions of zeros appear to be A048278.

Examples

			The a(4) = 2 through a(16) = 7 integer partitions (G = 16):
  4   33   8     9    55     66      94  77       555     G
  22  222  44    333  3322   444         5522     33333   88
           2222       22222  3333        332222   333222  664
                             222222      2222222          4444
                                                          5533
                                                          333322
                                                          22222222
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@FactorInteger[Times@@#][[All,2]]>1,SameQ@@PrimeOmega/@#]&]],{n,30}]

A321378 Number of integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 3, 2, 3, 0, 6, 1, 5, 3, 6, 1, 11, 2, 9, 6, 12, 5, 19, 4, 17, 11, 23, 9, 32, 10, 31, 22, 39, 17, 55, 21, 57, 37, 67, 33, 92, 44, 97, 65, 114, 63, 154, 78, 162, 113, 191, 117, 250, 138, 269, 194, 320
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(30) = 11 integer partitions:
  (30)
  (24,6)
  (15,15)
  (18,12)
  (20,10)
  (18,6,6)
  (12,12,6)
  (14,10,6)
  (10,10,10)
  (12,6,6,6)
  (6,6,6,6,6)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A322527 Number of integer partitions of n whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 31, 34, 45, 51, 63, 72, 88, 97, 120, 128, 158, 174, 201, 222, 264, 287, 333, 359, 416, 441, 518, 557, 631, 684, 770, 833, 954, 1017, 1141, 1222, 1378, 1475, 1643, 1755, 1939, 2097, 2327, 2471, 2758, 2928, 3233, 3470, 3813, 4085
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 18 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (52)       (44)
             (111)  (31)    (41)     (42)      (61)       (53)
                    (211)   (221)    (51)      (331)      (71)
                    (1111)  (311)    (222)     (421)      (422)
                            (2111)   (321)     (511)      (521)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (3211)     (2222)
                                     (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
Missing from the list for n = 7 through 9:
  (43)   (62)    (54)
  (322)  (332)   (63)
         (431)   (432)
         (3221)  (522)
                 (621)
                 (3222)
                 (3321)
                 (4311)
                 (32211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Last/@FactorInteger[Times@@#]&]],{n,30}]

A322530 Number of integer partitions of n with no 1's whose product of parts is a squarefree number.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 3, 6, 5, 5, 5, 6, 8, 8, 9, 8, 11, 8, 12, 13, 16, 14, 13, 16, 21, 18, 21, 25, 22, 24, 27, 35, 33, 33, 32, 37, 42, 47, 48, 48, 52, 51, 59, 70, 68, 65, 69, 80, 87, 90, 103, 100, 96, 103, 123, 128, 135, 136, 132, 153
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

Such a partition must be strict and its parts must also be squarefree.

Examples

			The a(26) = 11 integer partitions:
  (26),
  (15,11), (19,7), (21,5), (23,3),
  (13,7,6), (13,10,3), (13,11,2), (17,7,2), (19,5,2),
  (11,7,5,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&SquareFreeQ[Times@@#]&]],{n,30}]

A320698 Numbers whose product of prime indices is a prime power (A246655).

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112, 114, 115, 118, 121, 124
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers whose prime indices are all powers of a common prime number.

Examples

			The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (2), (3), (1,2), (4), (2,2), (1,3), (5), (1,1,2), (1,4), (7), (1,2,2), (8), (1,1,3), (2,4), (1,5), (9), (1,1,1,2), (3,3), (2,2,2), (1,1,4), (11), (1,7), (1,1,2,2), (1,8), (1,1,1,3), (13), (1,2,4), (1,1,5), (1,9), (1,1,1,1,2), (4,4), (1,3,3), (16), (1,2,2,2), (1,1,1,4), (2,8).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimePowerQ[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, p=1); for(k=1, #f, p=p*primepi(f[k])); isprimepower(p) \\ Felix Fröhlich, Oct 20 2018

A321347 Number of strict integer partitions of n containing no prime powers (including 1).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 4, 4, 2, 3, 4, 4, 5, 6, 5, 6, 7, 7, 9, 10, 10, 13, 12, 11, 15, 17, 16, 19, 20, 20, 25, 28, 26, 30, 33, 35, 41, 43, 42, 50, 55, 57, 64, 67, 67, 79, 86, 87, 97, 105, 109, 124, 131, 135, 151, 163, 169
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

First differs from A286221 at a(30) = 6, A286221(30) = 5.

Examples

			The a(36) = 13 strict integer partitions:
  (36),
  (21,15), (22,14), (24,12), (26,10), (30,6), (35,1),
  (14,12,10), (18,12,6), (20,10,6), (20,15,1), (21,14,1),
  (15,14,6,1).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A357710 Number of integer compositions of n with integer geometric mean.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 8, 4, 15, 17, 22, 48, 40, 130, 88, 287, 323, 543, 1084, 1145, 2938, 3141, 6928, 9770, 15585, 29249, 37540, 78464, 103289, 194265, 299752, 475086, 846933, 1216749, 2261920, 3320935, 5795349, 9292376, 14825858, 25570823, 39030115, 68265801, 106030947, 178696496
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2022

Keywords

Examples

			The a(6) = 4 through a(9) = 15 compositions:
  (6)       (7)        (8)         (9)
  (33)      (124)      (44)        (333)
  (222)     (142)      (2222)      (1224)
  (111111)  (214)      (11111111)  (1242)
            (241)                  (1422)
            (412)                  (2124)
            (421)                  (2142)
            (1111111)              (2214)
                                   (2241)
                                   (2412)
                                   (2421)
                                   (4122)
                                   (4212)
                                   (4221)
                                   (111111111)
		

Crossrefs

The unordered version (partitions) is A067539, ranked by A326623.
Compositions with integer average are A271654, partitions A067538.
Subsets whose geometric mean is an integer are A326027.
The version for factorizations is A326028.
The strict case is A339452, partitions A326625.
These compositions are ranked by A357490.
A011782 counts compositions.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,0,15}]
  • Python
    from math import prod, factorial
    from sympy import integer_nthroot
    from sympy.utilities.iterables import partitions
    def A357710(n): return sum(factorial(s)//prod(factorial(d) for d in p.values()) for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) if n else 0 # Chai Wah Wu, Sep 24 2023

Extensions

More terms from David A. Corneth, Oct 17 2022
Previous Showing 11-20 of 34 results. Next