cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A338902 Number of integer partitions of the n-th semiprime into semiprimes.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 7, 7, 10, 17, 25, 21, 34, 34, 73, 87, 103, 149, 176, 206, 281, 344, 479, 725, 881, 1311, 1597, 1742, 1841, 2445, 2808, 3052, 3222, 6784, 9298, 11989, 14533, 15384, 17414, 18581, 19680, 28284, 35862, 38125, 57095, 60582, 64010, 71730, 76016
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The a(1) = 1 through a(33) = 17 partitions of 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, where A-Z = 10-35:
  4  6  9  A   E    F   L     M      P      Q       X
           64  A4   96  F6    994    FA     M4      EA9
               644      966   A66    L4     AA6     F99
                        9444  E44    A96    E66     FE4
                              6664   F64    9944    L66
                              A444   9664   A664    P44
                              64444  94444  E444    9996
                                            66644   AA94
                                            A4444   E964
                                            644444  F666
                                                    FA44
                                                    L444
                                                    96666
                                                    A9644
                                                    F6444
                                                    966444
                                                    9444444
		

Crossrefs

A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of semiprimes.
A101048 counts partitions into semiprimes.
A338903 is the squarefree version.
A339112 includes the Heinz numbers of these partitions.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes, with sum/difference/product A176504/A176506/A087794.
A338899/A270650/A270652 give prime indices of squarefree semiprimes.

Programs

  • Mathematica
    nn=100;Table[Length[IntegerPartitions[n,All,Select[Range[nn],PrimeOmega[#]==2&]]],{n,Select[Range[nn],PrimeOmega[#]==2&]}]

Formula

a(n) = A101048(A001358(n)).

A339840 Numbers that cannot be factored into distinct primes or semiprimes.

Original entry on oeis.org

16, 32, 64, 81, 96, 128, 160, 192, 224, 243, 256, 288, 320, 352, 384, 416, 448, 486, 512, 544, 576, 608, 625, 640, 704, 729, 736, 768, 800, 832, 864, 896, 928, 960, 972, 992, 1024, 1088, 1152, 1184, 1215, 1216, 1280, 1312, 1344, 1376, 1408, 1458, 1472, 1504
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their prime indices begins:
    16: {1,1,1,1}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   128: {1,1,1,1,1,1,1}
   160: {1,1,1,1,1,3}
   192: {1,1,1,1,1,1,2}
   224: {1,1,1,1,1,4}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   352: {1,1,1,1,1,5}
   384: {1,1,1,1,1,1,1,2}
   416: {1,1,1,1,1,6}
   448: {1,1,1,1,1,1,4}
   486: {1,2,2,2,2,2}
For example, a complete list of all factorizations of 192 into primes or semiprimes is:
  (2*2*2*2*2*2*3)
  (2*2*2*2*2*6)
  (2*2*2*2*3*4)
  (2*2*2*4*6)
  (2*2*3*4*4)
  (2*4*4*6)
  (3*4*4*4)
Since none of these is strict, 192 is in the sequence.
		

Crossrefs

Allowing only primes gives A013929.
Removing all squares of primes gives A339740.
These are the positions of zeros in A339839.
The complement is A339889.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A338915 cannot be partitioned into distinct pairs (A320892).
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339742 into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n, ranked by A339618.
- A339655 counts non-loop-graphical partitions of 2n (A339657).

Programs

  • Maple
    filter:= proc(n)
      g(map(t -> t[2], ifactors(n)[2]))
    end proc;
    g:= proc(L) option remember; local x,i,j,t,s,Cons,R;
      if nops(L) = 1 then return L[1] > 3
      elif nops(L) = 2 then return max(L) > 4
      fi;
      Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1)
         + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))};
      R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary));
      type(R,string)
    end proc:
    select(filter, [$2..2000]); # Robert Israel, Dec 28 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&]

A339002 Numbers of the form prime(x) * prime(y) where x and y are distinct and have a common divisor > 1.

Original entry on oeis.org

21, 39, 57, 65, 87, 91, 111, 115, 129, 133, 159, 183, 185, 203, 213, 235, 237, 247, 259, 267, 299, 301, 303, 305, 319, 321, 339, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 543, 551, 553, 559, 565, 579, 597, 611, 623, 669, 685, 687
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
     21: {2,4}     235: {3,15}    393: {2,32}
     39: {2,6}     237: {2,22}    417: {2,34}
     57: {2,8}     247: {6,8}     427: {4,18}
     65: {3,6}     259: {4,12}    445: {3,24}
     87: {2,10}    267: {2,24}    453: {2,36}
     91: {4,6}     299: {6,9}     481: {6,12}
    111: {2,12}    301: {4,14}    489: {2,38}
    115: {3,9}     303: {2,26}    497: {4,20}
    129: {2,14}    305: {3,18}    515: {3,27}
    133: {4,8}     319: {5,10}    517: {5,15}
    159: {2,16}    321: {2,28}    519: {2,40}
    183: {2,18}    339: {2,30}    543: {2,42}
    185: {3,12}    365: {3,21}    551: {8,10}
    203: {4,10}    371: {4,16}    553: {4,22}
    213: {2,20}    377: {6,10}    559: {6,14}
		

Crossrefs

A300912 is the complement in A001358.
A338909 is the not necessarily squarefree version.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A339005 lists products of pairs of distinct primes of divisible index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338910/A338911 list products of pairs of primes both of odd/even index.
A339003/A339004 list squarefree semiprimes of odd/even index.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&GCD@@PrimePi/@First/@FactorInteger[#]>1&]

A339191 Partial products of squarefree semiprimes (A006881).

Original entry on oeis.org

6, 60, 840, 12600, 264600, 5821200, 151351200, 4994589600, 169816046400, 5943561624000, 225855341712000, 8808358326768000, 405184483031328000, 20664408634597728000, 1136542474902875040000, 64782921069463877280000, 3757409422028904882240000
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.
Do all terms belong to A242031 (weakly decreasing prime signature)?

Examples

			The sequence of terms together with their prime indices begins:
          6: {1,2}
         60: {1,1,2,3}
        840: {1,1,1,2,3,4}
      12600: {1,1,1,2,2,3,3,4}
     264600: {1,1,1,2,2,2,3,3,4,4}
    5821200: {1,1,1,1,2,2,2,3,3,4,4,5}
  151351200: {1,1,1,1,1,2,2,2,3,3,4,4,5,6}
The sequence of terms together with their prime signatures begins:
                   6: (1,1)
                  60: (2,1,1)
                 840: (3,1,1,1)
               12600: (3,2,2,1)
              264600: (3,3,2,2)
             5821200: (4,3,2,2,1)
           151351200: (5,3,2,2,1,1)
          4994589600: (5,4,2,2,2,1)
        169816046400: (6,4,2,2,2,1,1)
       5943561624000: (6,4,3,3,2,1,1)
     225855341712000: (7,4,3,3,2,1,1,1)
    8808358326768000: (7,5,3,3,2,2,1,1)
  405184483031328000: (8,5,3,3,2,2,1,1,1)
		

Crossrefs

A000040 lists the primes, with partial products A002110 (primorials).
A001358 lists semiprimes, with partial products A112141.
A002100 counts partitions into squarefree semiprimes (restricted: A338903)
A000142 lists factorial numbers, with partial products A000178.
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial sums A168472.
A166237 gives first differences of squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes.
A338899/A270650/A270652 give prime indices of squarefree semiprimes.
A338901 gives first appearances in the list of squarefree semiprimes.
A339113 gives products of primes of squarefree semiprime index.

Programs

  • Mathematica
    FoldList[Times,Select[Range[20],SquareFreeQ[#]&&PrimeOmega[#]==2&]]

A320913 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into squarefree semiprimes (A320891) but can be factored into distinct semiprimes (A320912).

Original entry on oeis.org

4, 9, 24, 25, 40, 49, 54, 56, 88, 104, 121, 135, 136, 152, 169, 184, 189, 232, 240, 248, 250, 289, 296, 297, 328, 336, 344, 351, 361, 375, 376, 424, 459, 472, 488, 513, 528, 529, 536, 560, 568, 584, 621, 624, 632, 664, 686, 712, 776, 783, 808, 810, 816, 824
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Comments

A semiprime (A001358) is a product of any two not necessarily distinct primes.
If A025487(k) is contained in this sequence then so is every positive integer with its prime signature. - David A. Corneth, Oct 24 2018

Crossrefs

Programs

  • Mathematica
    sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]!={},sqfsemfacs[#]=={}]&]
Previous Showing 31-35 of 35 results.