cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A320900 Expansion of Sum_{k>=1} x^k/(1 + x^k)^3.

Original entry on oeis.org

1, -2, 7, -12, 16, -17, 29, -48, 52, -42, 67, -105, 92, -79, 142, -184, 154, -143, 191, -262, 266, -189, 277, -441, 341, -262, 430, -495, 436, -402, 497, -712, 634, -444, 674, -897, 704, -553, 878, -1118, 862, -766, 947, -1189, 1222, -807, 1129, -1753, 1254, -992
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^3,k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1)/2, {d, Divisors[n]}], {n, 50}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)/2); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000217(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)/2.
a(n) = A000593(n) + A050999(n) - (A000203(n) + A001157(n))/2.
a(n) = (A002129(n) + A321543(n)) / 2. - Amiram Eldar, Jan 04 2025

A321811 Sum of 7th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 2188, 1, 78126, 2188, 823544, 1, 4785157, 78126, 19487172, 2188, 62748518, 823544, 170939688, 1, 410338674, 4785157, 893871740, 78126, 1801914272, 19487172, 3404825448, 2188, 6103593751, 62748518, 10465138360, 823544, 17249876310
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=7 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^7 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321811(n)=sigma(n>>valuation(n,2),7), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321811(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),7)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013955(A000265(n)) = sigma_7(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^7*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/16 = Pi^8/151200 = 0.0627548... . (End)

A363615 Expansion of Sum_{k>0} x^(3*k)/(1+x^k)^3.

Original entry on oeis.org

0, 0, 1, -3, 6, -9, 15, -24, 29, -30, 45, -67, 66, -63, 98, -129, 120, -117, 153, -204, 206, -165, 231, -341, 282, -234, 354, -417, 378, -354, 435, -594, 542, -408, 582, -770, 630, -513, 770, -966, 780, -702, 861, -1071, 1072, -759, 1035, -1527, 1143, -930, 1346
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Magma
    A363615:= func< n | -(&+[(-1)^d*Binomial(d-1,2): d in Divisors(n)]) >;
    [A363615(n): n in [1..60]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^#*Binomial[# - 1, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1+x^k)^3)))
    
  • PARI
    a(n) = -sumdiv(n, d, (-1)^d*binomial(d-1, 2));
    
  • SageMath
    def A363615(n): return sum(0^(n%j)*(-1)^(j+1)*binomial(j-1,2) for j in range(1, n+1))
    [A363615(n) for n in range(1,61)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: -Sum_{k>0} binomial(k-1,2) * (-x)^k/(1 - x^k).
a(n) = -Sum_{d|n} (-1)^d * binomial(d-1,2).
a(n) = A128315(n, 3), for n >= 3. - G. C. Greubel, Jun 22 2024
a(n) = (A321543(n) - 3*A002129(n) + 2*A048272(n)) / 2. - Amiram Eldar, Jan 04 2025

A363616 Expansion of Sum_{k>0} x^(4*k)/(1+x^k)^4.

Original entry on oeis.org

0, 0, 0, 1, -4, 10, -20, 36, -56, 80, -120, 176, -220, 266, -368, 491, -560, 634, -816, 1050, -1160, 1210, -1540, 1982, -2028, 2080, -2656, 3192, -3276, 3380, -4060, 4986, -5080, 4896, -6008, 7345, -7140, 6954, -8656, 10224, -9880, 9796, -11480, 13552, -13668, 12650
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Magma
    A363616:= func< n | (&+[(-1)^d*Binomial(d-1,3): d in Divisors(n)]) >;
    [A363616(n): n in [1..60]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[# - 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1+x^k)^4)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d-1, 3));
    
  • SageMath
    def A363616(n): return sum(0^(n%j)*(-1)^j*binomial(j-1,3) for j in range(4, n+1))
    [A363616(n) for n in range(1,61)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: Sum_{k>0} binomial(k-1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d-1,3).
a(n) = A128315(n, 4), for n >= 4. - G. C. Greubel, Jun 22 2024
a(n) = -(A138503(n) - 6*A321543(n) + 11*A002129(n) - 6*A048272(n)) / 6. - Amiram Eldar, Jan 04 2025

A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.

Original entry on oeis.org

1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
a(n) = (A138503(n) + 3*A321543(n) + 2*A002129(n)) / 6. - Amiram Eldar, Jan 04 2025

A321551 a(n) = Sum_{d|n} (-1)^(d-1)*d^12.

Original entry on oeis.org

1, -4095, 531442, -16781311, 244140626, -2176254990, 13841287202, -68736258047, 282430067923, -999755863470, 3138428376722, -8918293480462, 23298085122482, -56680071092190, 129746582562692, -281543712968703, 582622237229762, -1156551128144685, 2213314919066162, -4096999772640686
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e + 12) - 1)/(p^12 - 1); f[2, e_] := 2 - (2^(12*e + 12) - 1)/4095; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 04 2022 *)
  • PARI
    apply( a(n)=sumdiv(n, d, (-1)^(d-1)*d^12), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k-1)*k^12*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 24 2018
Multiplicative with a(2^e) = 2 - (2^(12*e + 12) - 1)/4095, and a(p^e) = (p^(12*e + 12) - 1)/(p^12 - 1) for p > 2. - Amiram Eldar, Nov 04 2022

A321564 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^8.

Original entry on oeis.org

1, -257, 6562, -65281, 390626, -1686434, 5764802, -16711425, 43053283, -100390882, 214358882, -428373922, 815730722, -1481554114, 2563287812, -4278124289, 6975757442, -11064693731, 16983563042, -25500455906, 37828630724, -55090232674
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=8 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^8 &]; Array[a, 25] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    apply( A321564(n)=sumdiv(n, d, (-1)^(n\d-d)*d^8), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^8*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -(127*2^(8*e+1) + 511)/255, and a(p^e) = (p^(8*e+8) - 1)/(p^8 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321808 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^11.

Original entry on oeis.org

1, -2049, 177148, -4192257, 48828126, -362976252, 1977326744, -8585738241, 31381236757, -100048830174, 285311670612, -742649943036, 1792160394038, -4051542498456, 8649804864648, -17583591913473, 34271896307634, -64300154115093
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=11 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^11 &]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    apply( A321808(n)=sumdiv(n, d, (-1)^(n\d-d)*d^11), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^11*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -3*(341*2^(11*e+1) + 1365)/2047, and a(p^e) = (p^(11*e+11) - 1)/(p^11 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321812 Sum of 8th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 6562, 1, 390626, 6562, 5764802, 1, 43053283, 390626, 214358882, 6562, 815730722, 5764802, 2563287812, 1, 6975757442, 43053283, 16983563042, 390626, 37828630724, 214358882, 78310985282, 6562, 152588281251, 815730722, 282472589764
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=8 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^8 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321812(n)=sigma(n>>valuation(n,2),8), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321812(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),8)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013956(A000265(n)) = sigma_8(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^8*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/18 = 0.0556671... . (End)

A321813 Sum of 9th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=9 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)
Previous Showing 21-30 of 65 results. Next