cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A321560 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^4.

Original entry on oeis.org

1, -17, 82, -241, 626, -1394, 2402, -3825, 6643, -10642, 14642, -19762, 28562, -40834, 51332, -61169, 83522, -112931, 130322, -150866, 196964, -248914, 279842, -313650, 391251, -485554, 538084, -578882, 707282, -872644, 923522, -978673, 1200644
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=4 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^4*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^4 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321560(n)=sumdiv(n, d, (-1)^(n\d-d)*d^4), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^4*x^k/(1 + x^k)  for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^4*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
Multiplicative with a(2^e) = -(7*2^(4*e+1) + 31)/15, and a(p^e) = (p^(4*e+4) - 1)/(p^4 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321561 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^5.

Original entry on oeis.org

1, -33, 244, -993, 3126, -8052, 16808, -31713, 59293, -103158, 161052, -242292, 371294, -554664, 762744, -1014753, 1419858, -1956669, 2476100, -3104118, 4101152, -5314716, 6436344, -7737972, 9768751, -12252702, 14408200, -16690344, 20511150
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=5 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^5*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^5 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321561(n)=sumdiv(n, d, (-1)^(n\d-d)*d^5), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^5*x^k/(1 + x^k)  for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^5*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
Multiplicative with a(2^e) = -3*(5*2^(5*e+1) + 21)/31, and a(p^e) = (p^(5*e+5) - 1)/(p^5 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321562 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^6.

Original entry on oeis.org

1, -65, 730, -4033, 15626, -47450, 117650, -257985, 532171, -1015690, 1771562, -2944090, 4826810, -7647250, 11406980, -16510913, 24137570, -34591115, 47045882, -63019658, 85884500, -115151530, 148035890, -188329050, 244156251, -313742650
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=6 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^6*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^6 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321562(n)=sumdiv(n, d, (-1)^(n\d-d)*d^6), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^6*x^k/(1 + x^k)  for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
Multiplicative with a(2^e) = -(31*2^(6*e+1) + 127)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321563 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^7.

Original entry on oeis.org

1, -129, 2188, -16257, 78126, -282252, 823544, -2080641, 4785157, -10078254, 19487172, -35570316, 62748518, -106237176, 170939688, -266321793, 410338674, -617285253, 893871740, -1270094382, 1801914272, -2513845188, 3404825448, -4552442508
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=7 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^7 &]; Array[a, 25] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    apply( A321563(n)=sumdiv(n, d, (-1)^(n\d-d)*d^7), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^7*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -3*(21*2^(7*e+1) + 85)/127, and a(p^e) = (p^(7*e+7) - 1)/(p^7 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321809 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^12.

Original entry on oeis.org

1, -4097, 531442, -16773121, 244140626, -2177317874, 13841287202, -68702695425, 282430067923, -1000244144722, 3138428376722, -8913940970482, 23298085122482, -56707753666594, 129746582562692, -281406240452609, 582622237229762
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Column k=12 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^12 &]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    apply( A321809(n)=sumdiv(n, d, (-1)^(n\d-d)*d^12), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^12*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -(2047*2^(12*e+1) + 8191)/4095, and a(p^e) = (p^(12*e+12) - 1)/(p^12 - 1) for p > 2. - Amiram Eldar, Nov 22 2022

A321815 Sum of 11th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • GAP
    List(List(List([1..25],j->DivisorsInt(j)),i->Filtered(i,k->IsOddInt(k))),m->Sum(m,n->n^11)); # Muniru A Asiru, Dec 07 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321815(n)=sigma(n>>valuation(n,2),11), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),11)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)

A321817 a(n) = Sum_{d|n, n/d odd} d^6 for n > 0.

Original entry on oeis.org

1, 64, 730, 4096, 15626, 46720, 117650, 262144, 532171, 1000064, 1771562, 2990080, 4826810, 7529600, 11406980, 16777216, 24137570, 34058944, 47045882, 64004096, 85884500, 113379968, 148035890, 191365120, 244156251, 308915840, 387952660
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013665.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^6 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321817(n)=sumdiv(n,d,if(bittest(n\d,0),d^6)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(6*e) and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 127*zeta(7)/896 = 0.142924... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-6)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A321818 a(n) = Sum_{d|n, n/d odd} d^8 for n > 0.

Original entry on oeis.org

1, 256, 6562, 65536, 390626, 1679872, 5764802, 16777216, 43053283, 100000256, 214358882, 430047232, 815730722, 1475789312, 2563287812, 4294967296, 6975757442, 11021640448, 16983563042, 25600065536, 37828630724, 54875873792, 78310985282
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013667.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^8 &, OddQ[n/#] &]; Array[a, 24] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321818(n)=sumdiv(n,d,if(bittest(n\d,0),d^8)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(8*e) and a(p^e) = (p^(8*e+8)-1)/(p^8-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = 511*zeta(9)/4608 = 0.1111168... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-8)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A321819 a(n) = Sum_{d|n, n/d odd} d^10 for n > 0.

Original entry on oeis.org

1, 1024, 59050, 1048576, 9765626, 60467200, 282475250, 1073741824, 3486843451, 10000001024, 25937424602, 61918412800, 137858491850, 289254656000, 576660215300, 1099511627776, 2015993900450, 3570527693824, 6131066257802, 10240001048576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013669.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^10 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    apply( A321819(n)=sumdiv(n,d,if(bittest(n\d,0),d^10)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(10*e) and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = 2047*zeta(11)/22528 = 0.090909606... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-10)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A321820 a(n) = Sum_{d|n, n/d odd} d^12 for n > 0.

Original entry on oeis.org

1, 4096, 531442, 16777216, 244140626, 2176786432, 13841287202, 68719476736, 282430067923, 1000000004096, 3138428376722, 8916117225472, 23298085122482, 56693912379392, 129746582562692, 281474976710656, 582622237229762, 1156833558212608
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013671.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^12 &, OddQ[n/#] &]; Array[a, 20] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321820(n)=sumdiv(n,d,if(bittest(n\d,0),d^12)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(12*e) and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = 8191*zeta(13)/106496 = 0.0769231... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-12)*(1-1/2^s). - Amiram Eldar, Jan 09 2023
Previous Showing 31-40 of 51 results. Next