cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   3: (2)
   5: (3)
   6: (2,1)
   7: (4)
   9: (2,2)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
		

Crossrefs

These partitions are counted by A046682.
The strong version is A352487, counted by A000701.
The opposite version is A352488, strong A352490
These are the positions of nonpositive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352522 counts compositions by weak subdiagonals, rank statistic A352515.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) <= A122111(a(n)).

A321645 Number of distinct row/column permutations of plane partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 32, 96, 290, 864, 2502, 7134, 20081
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(3) = 11 permutations of plane partitions:
  [3] [2 1] [1 2] [1 1 1]
.
  [2] [1 1] [1 1] [1] [1 0] [0 1]
  [1] [1 0] [0 1] [2] [1 1] [1 1]
.
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,6}]

A321655 Number of distinct row/column permutations of strict plane partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 29, 33, 53, 77, 225
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(6) = 9 permutations of strict plane partitions:
  [6] [2 4] [4 2] [1 5] [5 1] [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
.
  [1] [5] [0 1] [1 0] [2 3] [3 2] [2] [4] [0 2] [1 3] [2 0] [3 1]
  [5] [1] [2 3] [3 2] [0 1] [1 0] [4] [2] [1 3] [0 2] [3 1] [2 0]
.
  [1] [1] [2] [2] [3] [3]
  [2] [3] [1] [3] [1] [2]
  [3] [2] [3] [1] [2] [1]
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Length/@Split[#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,5}]

A238744 Irregular table read by rows: T (n, k) gives the number of primes p such that p^k divides n; table omits all zero values.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2
Offset: 2

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

If the prime signature of n (nonincreasing version) is viewed as a partition, row n gives the conjugate partition.

Examples

			24 = 2^3*3 is divisible by two prime numbers (2 and 3), one square of a prime (4 = 2^2), and one cube of a prime (8 = 2^3); therefore, row 24 of the table is {2,1,1}.
From _Gus Wiseman_, Mar 31 2022: (Start)
Rows begin:
     1: ()        16: (1,1,1,1)    31: (1)
     2: (1)       17: (1)          32: (1,1,1,1,1)
     3: (1)       18: (2,1)        33: (2)
     4: (1,1)     19: (1)          34: (2)
     5: (1)       20: (2,1)        35: (2)
     6: (2)       21: (2)          36: (2,2)
     7: (1)       22: (2)          37: (1)
     8: (1,1,1)   23: (1)          38: (2)
     9: (1,1)     24: (2,1,1)      39: (2)
    10: (2)       25: (1,1)        40: (2,1,1)
    11: (1)       26: (2)          41: (1)
    12: (2,1)     27: (1,1,1)      42: (3)
    13: (1)       28: (2,1)        43: (1)
    14: (2)       29: (1)          44: (2,1)
    15: (2)       30: (3)          45: (2,1)
(End)
		

Crossrefs

Row lengths are A051903(n); row sums are A001222(n).
Cf. A217171.
These partitions are ranked by A238745.
For prime indices A296150 instead of exponents we get A321649, rev A321650.
A000700 counts self-conjugate partitions, ranked by A088902.
A003963 gives product of prime indices, conjugate A329382.
A008480 gives number of permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798.
A124010 gives prime signature, sorted A118914, length A001221.
A352486-A352490 are sets related to the fixed points of A122111.

Programs

  • Mathematica
    Table[Length/@Table[Select[Last/@FactorInteger[n],#>=k&],{k,Max@@Last/@FactorInteger[n]}],{n,2,100}] (* Gus Wiseman, Mar 31 2022 *)

Formula

Row n is identical to row A124859(n) of table A212171.

A321646 Number of distinct row/column permutations of Ferrers diagrams of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 15, 39, 108, 290, 781, 2050, 5434, 14210, 37150, 96347, 248250, 636278, 1620721, 4108340, 10361338, 26016060, 65019655, 161831393, 401090324, 990229108, 2435316984, 5967684036, 14572351628, 35464928382, 86033632280, 208062026930, 501676936146
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(4) = 15 diagrams:
  o o o o
.
  o o o   o o o   o o o   o o   o         o         o
  o         o         o   o o   o o o   o o o   o o o
.
  o o   o o   o     o       o     o
  o       o   o o   o     o o     o
  o       o   o     o o     o   o o
.
  o
  o
  o
  o
		

Crossrefs

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Sum[Length[Permutations[y]]*Length[Permutations[conj[y]]],{y,IntegerPartitions[n]}],{n,10}]

Formula

a(n) = Sum_{k = 1..A000041(n)} A008480(A215366(n,k)) * A008480(A122111(A215366(n,k))).

Extensions

a(11)-a(30) from Alois P. Heinz, Nov 15 2018

A321647 Number of distinct row/column permutations of the Ferrers diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 6, 1, 1, 6, 1, 9, 12, 10, 1, 8, 1, 12, 1, 12, 1, 36, 1, 1, 20, 14, 8, 12, 1, 16, 30, 12, 1, 72, 1, 15, 9, 18, 1, 10, 1, 9, 42, 18, 1, 8, 20, 16, 56, 20, 1, 72, 1, 22, 18, 1, 40, 120, 1, 21, 72, 72, 1, 20, 1, 24, 9, 24, 10, 180, 1, 15, 1, 26, 1, 144, 70, 28, 90, 20, 1, 72, 30, 27, 110, 30, 112, 12, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(10) = 6 permutations:
  o o   o o   o     o       o     o
  o       o   o o   o     o o     o
  o       o   o     o o     o   o o
The a(21) = 12 permutations:
  o o   o o   o o   o o   o o   o o   o     o     o       o     o     o
  o o   o o   o     o       o     o   o o   o o   o     o o   o o     o
  o       o   o o   o     o o     o   o o   o     o o   o o     o   o o
  o       o   o     o o     o   o o   o     o o   o o     o   o o   o o
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]],{n,50}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A321647(n) = (A008480(n) * A008480(A122111(n))); \\ Antti Karttunen, Feb 09 2019

Formula

a(n) = A008480(n) * A008480(A122111(n)) = A008480(n) * A321648(n).

Extensions

More terms from Antti Karttunen, Feb 09 2019

A325045 Number of factorizations of n whose conjugate as an integer partition has no ones.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

After a(1) = 1, a(n) is the number of factorizations of n with at least two factors, the largest two of which are equal.

Examples

			The initial terms count the following factorizations:
    1: {}
    4: 2*2
    8: 2*2*2
    9: 3*3
   16: 2*2*2*2
   16: 4*4
   18: 2*3*3
   25: 5*5
   27: 3*3*3
   32: 2*2*2*2*2
   32: 2*4*4
   36: 2*2*3*3
   36: 6*6
   48: 3*4*4
   49: 7*7
   50: 2*5*5
   54: 2*3*3*3
   64: 2*2*2*2*2*2
   64: 2*2*4*4
   64: 4*4*4
   64: 8*8
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[facs[n],FreeQ[conj[#],1]&]],{n,1,100}]
  • PARI
    A325045(n, m=n, facs=List([])) = if(1==n, (0==#facs || (#facs>=2 && facs[1]==facs[2])), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A325045(n/d, d, newfacs))); (s)); \\ Antti Karttunen, May 03 2022

Extensions

More terms from Antti Karttunen, May 03 2022

A363219 Twice the median of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

0, 2, 2, 4, 2, 3, 2, 6, 4, 2, 2, 4, 2, 2, 4, 8, 2, 5, 2, 2, 3, 2, 2, 5, 4, 2, 6, 2, 2, 4, 2, 10, 2, 2, 4, 6, 2, 2, 2, 2, 2, 3, 2, 2, 6, 2, 2, 6, 4, 4, 2, 2, 2, 7, 4, 2, 2, 2, 2, 4, 2, 2, 4, 12, 3, 2, 2, 2, 2, 4, 2, 7, 2, 2, 6, 2, 4, 2, 2, 2, 8, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 25 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition (4,2,1) has Heinz number 42 and conjugate (3,2,1,1) with median 3/2, so a(42) = 3.
		

Crossrefs

Twice the row media of A321649 or A321650.
For mean instead of twice median we have A326839/A326840.
This is the conjugate version of A360005.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 is partition conjugation in terms of Heinz numbers.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A352491 gives n minus Heinz number of conjugate.
A363220 counts partitions with same median as conjugate.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[If[n==1,0,2*Median[conj[prix[n]]]],{n,100}]
Previous Showing 11-18 of 18 results.