cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A323347 Number of integer partitions of n whose parts can be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 6, 2, 11, 2, 7, 7, 10, 2, 18, 2, 17, 13, 9, 2, 50, 3, 10, 24, 34, 2, 85, 2, 51, 46, 12, 9, 261, 2, 13, 80, 257, 2, 258, 2, 323, 431, 15, 2, 1533, 3, 227, 206, 1165, 2, 971, 483, 2409, 309, 18, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

Rectangles must be of size m X k where m, k are divisors of n and mk <= n. This implies that a(p) = 2 for p prime, since the only allowable rectangles must be of size 1 X 1 corresponding to the partition (p), or 1 X p or p X 1 corresponding to the partition (1,1,...,1). Similarly, a(p^2) = 3 since the allowable rectangles must be of sizes 1 X 1 (partition (p^2)), 1 X p or p X 1 (partition (p,p,...,p)), 1 X p^2, p^2 X 1 and p X p (partition (1,1,...,1)). - Chai Wah Wu, Jan 14 2019

Examples

			The a(8) = 5 integer partitions are (8), (44), (2222), (3311), (11111111).
The a(12) = 11 integer partitions (C = 12):
  (C)
  (66)
  (444)
  (3333)
  (4422)
  (5511)
  (222222)
  (332211)
  (22221111)
  (222111111)
  (111111111111)
For example, the arrangements of (222111111) are:
  [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
  [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
  [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[IntegerPartitions[n],!Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]

Formula

a(p) = 2 and a(p^2) = 3 for p prime (see comment). - Chai Wah Wu, Jan 14 2019

Extensions

a(17)-a(53) from Chai Wah Wu, Jan 15 2019
a(54)-a(59) from Chai Wah Wu, Jan 16 2019

A321723 Number of non-normal magic squares whose entries are all 0 or 1 and sum to n.

Original entry on oeis.org

1, 1, 0, 0, 9, 20, 96, 656, 5584, 48913, 494264, 5383552, 65103875, 840566080, 11834159652, 176621049784, 2838040416201, 48060623405312
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal magic square is a square matrix with row sums, column sums, and both diagonals all equal to d, for some d|n.

Examples

			The a(4) = 9 magic squares:
  [1 1]
  [1 1]
.
  [1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
  [0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
  [0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
  [0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Join[{Tr[prs2mat[#]],Tr[Reverse[prs2mat[#]]]},Total/@prs2mat[#],Total/@Transpose[prs2mat[#]]]]&]],{n,5}]

Formula

a(n) >= A007016(n) with equality if n is prime. - Chai Wah Wu, Jan 15 2019

Extensions

a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(17) from Chai Wah Wu, Jan 16 2019

A321732 Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, and the same row sums as column sums.

Original entry on oeis.org

1, 1, 3, 11, 53, 317, 2293, 19435, 188851, 2068417, 25203807, 338117445, 4951449055, 78589443061, 1343810727205, 24626270763109, 481489261372381, 10004230113283129, 220125503239710879, 5113204953106107087, 125037079246130168973
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Examples

			The a(3) = 11 matrices:
  [3]
.
  [2 0] [1 1] [1 0] [0 1]
  [0 1] [1 0] [0 2] [1 1]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Extensions

a(7) onwards from Ludovic Schwob, Apr 03 2024

A321735 Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.

Original entry on oeis.org

1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Examples

			The a(3) = 7 matrices:
  [1 1]
  [1 0]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

Let c(y) be the coefficient of m(y) in e(y), where m is monomial symmetric functions and e is elementary symmetric functions. Then a(n) = Sum_{|y| = n} c(y).

A323302 Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1):
  [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
  [3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3]
.
  [1 3] [1 3] [2 2] [2 2] [3 1] [3 1]
  [2 2] [3 1] [1 3] [3 1] [1 3] [2 2]
  [3 1] [2 2] [3 1] [1 3] [2 2] [1 3]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[ptnmats[n],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{n,100}]

A321736 Number of non-isomorphic weight-n multiset partitions whose part-sizes are also their vertex-degrees.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 42, 92, 231, 579, 1577
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with the same multiset of row sums as of column sums.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1},{2}}  {{1},{2,2}}    {{1,1},{2,2}}      {{1,1},{1,2,2}}
                    {{2},{1,2}}    {{1,2},{1,2}}      {{1,1},{2,2,2}}
                    {{1},{2},{3}}  {{1},{2,2,2}}      {{1,2},{1,2,2}}
                                   {{2},{1,2,2}}      {{1},{2,2,2,2}}
                                   {{1},{1},{2,3}}    {{2},{1,2,2,2}}
                                   {{1},{2},{3,3}}    {{1},{2,2},{3,3}}
                                   {{1},{3},{2,3}}    {{1},{2,3},{2,3}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3,3,3}}
                                                      {{1},{3},{2,3,3}}
                                                      {{2},{1,2},{3,3}}
                                                      {{2},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{2},{2},{3,4}}
                                                      {{1},{2},{3},{4,4}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

A321739 Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 21, 46, 94, 208
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Also the number of (0,1) square matrices up to row and column permutations with n ones and no zero rows or columns, with the same multiset of row sums as of column sums.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions:
  {1}  {1}{2}  {2}{12}    {12}{12}      {1}{23}{23}      {12}{13}{23}
               {1}{2}{3}  {1}{1}{23}    {2}{13}{23}      {3}{23}{123}
                          {1}{3}{23}    {3}{3}{123}      {1}{1}{1}{234}
                          {1}{2}{3}{4}  {1}{2}{2}{34}    {1}{1}{24}{34}
                                        {1}{2}{4}{34}    {1}{2}{34}{34}
                                        {1}{2}{3}{4}{5}  {1}{3}{24}{34}
                                                         {1}{4}{4}{234}
                                                         {2}{4}{12}{34}
                                                         {3}{4}{12}{34}
                                                         {1}{2}{3}{3}{45}
                                                         {1}{2}{3}{5}{45}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

A323304 Heinz numbers of integer partitions that cannot be arranged into a matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

The first term of this sequence absent from A106543 is 144.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Select[Range[2,1000],Select[ptnmats[#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]

A323348 Number of integer partitions of n whose parts cannot be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 13, 17, 27, 36, 54, 66, 99, 128, 169, 221, 295, 367, 488, 610, 779, 993, 1253, 1525, 1955, 2426, 2986, 3684, 4563, 5519, 6840, 8298, 10097, 12298, 14874, 17716, 21635, 26002, 31105, 37081, 44581, 52916, 63259, 74852, 88703, 105543, 124752, 145740, 173522, 203999, 239737, 280424, 329929
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Examples

			The a(8) = 17 integer partitions:
  (53), (62), (71),
  (332), (422), (431), (521), (611),
  (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]

Extensions

a(17)-a(53) from Chai Wah Wu, Jan 15 2019

A321725 Irregular triangle read by rows where T(n,k) is the number of d X d non-normal semi-magic squares with d = A027750(n,k) and sum of all entries equal to n.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 3, 24, 1, 120, 1, 4, 21, 720, 1, 5040, 1, 5, 282, 40320, 1, 55, 362880, 1, 6, 6210, 3628800, 1, 39916800, 1, 7, 120, 2008, 202410, 479001600, 1, 6227020800, 1, 8, 9135630, 87178291200, 1, 231, 153040, 1307674368000, 1, 9, 10147
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.

Examples

			Triangle begins:
   1
   1   2
   1   6
   1   3  24
   1 120
   1   4  21 720
The T(6,2) = 4 semi-magic squares (zeros not shown):
  [3  ] [2 1] [1 2] [  3]
  [  3] [1 2] [2 1] [3  ]
The T(6,3) = 21 semi-magic squares (zeros not shown):
  [2    ] [2    ] [2    ] [1 1  ] [1 1  ] [1 1  ] [1 1  ]
  [  2  ] [  1 1] [    2] [1 1  ] [1   1] [  1 1] [    2]
  [    2] [  1 1] [  2  ] [    2] [  1 1] [1   1] [1 1  ]
.
  [1   1] [1   1] [1   1] [1   1] [  2  ] [  2  ] [  2  ]
  [1 1  ] [1   1] [  2  ] [  1 1] [2    ] [1   1] [    2]
  [  1 1] [  2  ] [1   1] [1 1  ] [    2] [1   1] [2    ]
.
  [  1 1] [  1 1] [  1 1] [  1 1] [    2] [    2] [    2]
  [2    ] [1 1  ] [1   1] [  1 1] [2    ] [1 1  ] [  2  ]
  [  1 1] [1   1] [1 1  ] [2    ] [  2  ] [1 1  ] [2    ]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[k]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5},{k,Divisors[n]}]

Formula

T(n, A000005(n)) = n!. Sum_k T(n,k) = A321719(n). - Chai Wah Wu, Jan 15 2019

Extensions

a(15)-a(48) from Chai Wah Wu, Jan 15 2019
Edited by Peter Munn, Mar 05 2025
Previous Showing 11-20 of 24 results. Next