A323431
Number of strict rectangular plane partitions of n.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 21, 25, 33, 41, 53, 65, 81, 97, 121, 143, 173, 215, 255, 305, 367, 441, 527, 637, 751, 899, 1067, 1269, 1491, 1775, 2071, 2439, 2875, 3357, 3911, 4577, 5309, 6177, 7171, 8305, 9609, 11151
Offset: 0
The a(10) = 21 matrices:
[10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1]
.
[9] [8] [7] [6] [4 2] [4 3]
[1] [2] [3] [4] [3 1] [2 1]
.
[7] [6] [5] [5]
[2] [3] [4] [3]
[1] [1] [1] [2]
.
[4]
[3]
[2]
[1]
-
Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]
A323529
Number of strict square plane partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 55, 69, 79, 95, 109, 129, 145, 169, 189, 217, 241, 273, 301, 339, 371, 413, 451, 499, 541, 595, 643, 703, 757, 823, 925, 999, 1107, 1229, 1387, 1559, 1807, 2071, 2453, 2893, 3451, 4109, 5011
Offset: 0
The a(12) = 5 strict square plane partitions:
[12]
.
[1 2] [1 2] [1 3] [1 4]
[3 6] [4 5] [2 6] [2 5]
The a(15) = 13 strict square plane partitions:
[15]
.
[7 5] [8 4] [9 3] [6 5] [7 4] [9 2] [6 4] [7 3] [8 2] [6 3] [6 3] [7 2]
[2 1] [2 1] [2 1] [3 1] [3 1] [3 1] [3 2] [4 1] [4 1] [4 2] [5 1] [5 1]
Cf.
A000219,
A008289,
A039622,
A047966,
A089299,
A101509,
A319066,
A323429,
A323434,
A323522,
A323530.
-
h:= proc(n) h(n):= (n^2)!*mul(k!/(n+k)!, k=0..n-1) end:
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, `if`(issqr(t), h(isqrt(t)), 0),
b(n, i-1, t) +b(n-i, min(n-i, i-1), t+1)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..70); # Alois P. Heinz, Jan 24 2019
-
Table[Sum[Length[Select[Union[Sort/@Tuples[Reverse/@IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
(* Second program: *)
h[n_] := (n^2)! Product[k!/(k+n)!, {k, 0, n-1}];
b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, If[IntegerQ[ Sqrt[t]], h[Sqrt[t]], 0], b[n-i, Min[n-i, i-1], t+1] + b[n, i-1, t]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 70] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
A323435
Number of rectangular plane partitions of n with no repeated rows or columns.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 8, 13, 15, 28, 33, 52, 69, 101, 133, 202, 256, 369, 506, 688, 935, 1295, 1736, 2355, 3184, 4284, 5745, 7722, 10281, 13691, 18316, 24168, 32058, 42389, 55915, 73542, 96753, 126709, 166079, 217017, 283258
Offset: 0
The a(7) = 13 plane partitions:
[7] [4 3] [5 2] [6 1] [4 2 1]
.
[6] [5] [3 2] [4 1] [4] [2 2] [3 1]
[1] [2] [1 1] [1 1] [3] [2 1] [2 1]
.
[4]
[2]
[1]
-
Table[Sum[Length[Select[Union[Tuples[IntegerPartitions[#,{k}]&/@ptn]],And[UnsameQ@@#,UnsameQ@@Transpose[#],And@@(OrderedQ[#,GreaterEqual]&/@Transpose[#])]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,20}]
A306318
Number of square twice-partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 5, 10, 12, 19, 24, 39, 49, 73, 104, 151, 212, 317, 443, 638, 936, 1296, 1841, 2635, 3641, 5069, 7176, 9884, 13614, 19113, 26162, 36603, 50405, 70153, 96176, 135388, 184753, 257882, 353587, 494653, 671992, 934905, 1272195, 1762979, 2389255
Offset: 0
The a(10) = 19 square twice-partitions:
((ten)) ((32)(32)) ((211)(111)(111))
((32)(41))
((33)(22))
((33)(31))
((41)(32))
((41)(41))
((42)(22))
((42)(31))
((43)(21))
((44)(11))
((51)(22))
((51)(31))
((52)(21))
((53)(11))
((61)(21))
((62)(11))
((71)(11))
Cf.
A000219,
A001970,
A063834 (twice-partitions),
A089299 (square plane partitions),
A279787,
A305551,
A306017,
A306319 (rectangular twice-partitions),
A319066,
A323429,
A323531 (square partitions of partitions).
-
Table[Sum[Length[Union@@(Tuples[IntegerPartitions[#,{k}]&/@#]&/@IntegerPartitions[n,{k}])],{k,0,Sqrt[n]}],{n,0,20}]
A323530
Number of square plane partitions of n with strictly decreasing rows and columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 25, 30, 39, 46, 58, 67, 82, 94, 112, 127, 149, 168, 194, 218, 251, 282, 324, 368, 425, 489, 573, 670, 797, 952, 1148, 1392, 1703, 2086, 2568, 3168, 3908, 4823, 5947, 7318, 8986, 11012, 13443, 16371, 19866
Offset: 0
The a(12) = 8 plane partitions:
[12]
.
[5 4] [6 3] [7 2] [5 3] [6 2] [4 3] [5 2]
[2 1] [2 1] [2 1] [3 1] [3 1] [3 2] [4 1]
-
Table[Sum[Length[Select[Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn],And@@Greater@@@#&&And@@Greater@@@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
A382923
Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 13, 16, 16, 0, 5, 14, 33, 40, 35, 0, 6, 29, 70, 105, 100, 75, 0, 7, 27, 88, 207, 292, 244, 159, 0, 8, 51, 152, 336, 604, 758, 576, 334, 0, 9, 44, 206, 588, 1161, 1749, 1920, 1329, 696, 0, 10, 79, 300, 882, 2076, 3685, 4924, 4802, 3028, 1442
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, ...
3, 5, 13, 14, 29, 27, ...
7, 16, 33, 70, 88, 152, ...
16, 40, 105, 207, 336, 588, ...
35, 100, 292, 604, 1161, 2076, ...
...
A(2,0) = 3 counts:
[2], [1,1], [1]
[1].
A(2,1) = 5 counts:
[2] [0] [1] [1] [0]
[0], [2], [1] [0] [1]
[0], [1], [1].
-
G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
G_tx(10)
A382924
Number of m-compositions of n with n zeros.
Original entry on oeis.org
1, 2, 13, 70, 336, 2076, 11091, 65210, 365661, 2159354, 11713047, 71427504, 392916687, 2245186352, 13527678851, 73679458270, 429472428457, 2553994191220, 14264421153074, 80483620074092, 489077890675807, 2768919905996888, 15394229582049408, 91794448088043258
Offset: 0
a(2) = 13 counts:
[2] [0] [0] [1] [1] [1] [0] [0] [0] [1][1] [1][0] [0][0] [0][1]
[0] [2] [0] [1] [0] [0] [1] [1] [0] [0][0], [0][1], [1][1], [1][0].
[0], [0], [2], [0] [1] [0] [1] [0] [1]
[0], [0], [1], [0], [1], [1],
-
G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
A382924(max_n) ={my(A=G_tx(max_n)); vector(max_n,i,A[i,i])}
A382924(20)
A306320
Number of square plane partitions of n with distinct row sums and distinct column sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 5, 5, 10, 11, 18, 21, 31, 37, 56, 70, 97, 134, 180, 247, 343, 462, 623, 850, 1128, 1509, 2004, 2649, 3467, 4590, 5958, 7814, 10161, 13287, 17208, 22495, 29129, 37997, 49229, 64098, 82940, 107868, 139390, 180737, 233214, 301527, 388018, 500058
Offset: 0
The a(12) = 21 square plane partitions with distinct row sums and distinct column sums:
[twelve]
.
[64][73][82][91][54][63][72][81][44][53][53][62][62][71][43][43][52][52][61]
[11][11][11][11][21][21][21][21][31][22][31][22][31][31][32][41][32][41][41]
.
[221]
[211]
[111]
-
Table[Sum[Length[Select[Union[Reverse/@Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Total/@#&&UnsameQ@@Total/@If[#=={},{},Transpose[#]]&&And@@OrderedQ/@Reverse/@If[#=={},{},Transpose[#]]&]],{ptn,IntegerPartitions[n]}],{n,0,20}]
A323586
Number of plane partitions of n with no repeated rows (or, equivalently, no repeated columns).
Original entry on oeis.org
1, 1, 2, 5, 8, 16, 30, 53, 89, 158, 265, 443, 735, 1197
Offset: 0
The a(4) = 8 plane partitions with no repeated rows:
4 31 22 211 1111
.
3 21 111
1 1 1
The a(6) = 30 plane partitions with no repeated columns:
6 51 42 321
.
5 4 41 3 31 32 31 22 21 221 211
1 2 1 3 2 1 11 2 21 1 11
.
4 3 31 2 21 22 21 111
1 2 1 2 2 1 11 11
1 1 1 2 1 1 1 1
.
3 2 21 11
1 2 1 11
1 1 1 1
1 1 1 1
.
2 11
1 1
1 1
1 1
1 1
.
1
1
1
1
1
1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}]
Comments