cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A324816 Binary weight of A324815; number of 1-bits in common positions in 2*A156552(n) and A323243(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 2, 1, 1, 0, 3, 2, 1, 1, 1, 0, 1, 0, 0, 2, 3, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 2, 3, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Comments

Numbers 0 .. 7 occur for the first time in 1, 4, 9, 54, 162, 972, 2816, 3456. These are also the positions of records so far.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
    A324816(n) = hammingweight(bitand(2*A156552(n),A323243(n))); \\ Needs code also from A323243.

Formula

a(n) = A000120(A324815(n)).
a(p) = 0 for all primes p.
a(A324201(n)) = A000043(n).

A324879 Numbers k such that A324863(k) is equal to A324874(k).

Original entry on oeis.org

1, 9, 15, 16, 21, 27, 35, 39, 55, 57, 64, 75, 77, 85, 87, 90, 91, 95, 99, 105, 111, 115, 119, 125, 129, 133, 143, 147, 155, 159, 161, 175, 183, 185, 189, 195, 201, 203, 205, 209, 213, 221, 235, 237, 243, 245, 253, 256, 259, 265, 267, 275, 285, 287, 295, 299, 301, 303, 319, 321, 323, 325, 335, 339, 341, 351, 355, 363, 365
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2019

Keywords

Comments

In range 1..10000, there are only three such numbers k for which A324868(k) == A000120(A324866(k)): 1, 9, 125. See A324201.

Crossrefs

Subsequences: A324201, A324880 (even terms).

Programs

A329640 Numbers n for which A329639(n) is equal to gcd(A329638(n), A329639(n)).

Original entry on oeis.org

1, 9, 18, 27, 45, 54, 70, 75, 84, 125, 135, 144, 153, 198, 279, 366, 390, 392, 423, 459, 747, 837, 855, 858, 891, 927, 1269, 1341, 1494, 1503, 1690, 1899, 2097, 2241, 2493, 2604, 2679, 2763, 2781, 2888, 2979, 2988, 3177, 3411, 3507, 3879, 4023, 4041, 4050, 4482, 4491, 4509, 4707, 5067, 5283, 5463, 5679, 5697, 5817, 5877, 5982, 6093
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

After the initial 1, numbers n such that A329638(n) is a multiple of A329639(n).

Crossrefs

Cf. A324201 (a subsequence).
Cf. also A326141.

Programs

A368989 Values of records in A368698.

Original entry on oeis.org

1, 2, 3, 4, 8, 24, 26, 48, 124, 342, 624, 1330, 2400, 3124, 14640, 16806, 28560, 29281, 161050, 371292, 483153, 1771560, 4826808, 19487170, 20049821, 24318700, 62748516, 214358880, 289608539, 410338672, 815730720, 2357947690, 3234870386, 6975757440, 10604499372, 25937424600
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Terms A324201(k) - 1: 8, 124, 161050, 410338672, ..., seem to form a subsequence. See comments in A368988 and in A344005.

Crossrefs

Formula

a(n) = A368698(A368988(n)).

A342652 a(n) = A331410(A156552(n)).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 3, 2, 3, 0, 2, 0, 3, 2, 3, 0, 2, 1, 4, 1, 3, 0, 2, 0, 1, 3, 4, 2, 3, 0, 5, 3, 3, 0, 4, 0, 4, 2, 6, 0, 2, 1, 4, 4, 4, 0, 4, 2, 3, 4, 7, 0, 3, 0, 7, 3, 3, 3, 3, 0, 5, 5, 3, 0, 4, 0, 8, 2, 5, 2, 4, 0, 3, 3, 8, 0, 5, 3, 11, 6, 5, 0, 4, 2, 5, 7, 8, 4, 5, 0, 2, 3, 4, 0, 6, 0, 4, 2
Offset: 2

Views

Author

Antti Karttunen, Mar 18 2021

Keywords

Comments

Positions of ones is given by a subsequence of A053810, i.e., prime powers whose exponent is one of the primes in A000043. See also A324201, A335431.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
    A342652(n) = A331410(A156552(n));

Formula

a(n) = A331410(A156552(n)).
a(p) = 0 for all primes p.
a(A003961(n)) = a(n).

A368988 Positions of records in A368698.

Original entry on oeis.org

0, 2, 3, 4, 6, 12, 14, 24, 28, 56, 60, 112, 120, 124, 240, 248, 480, 488, 496, 992, 1000, 1008, 2016, 2032, 4016, 4024, 4064, 4080, 8112, 8128, 8160, 8176, 16312, 16320, 16352, 16368
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

The even perfect numbers seem to occur here, as via Doudna-mapping they encode terms of A324201, which in turn have large values in A344005.

Crossrefs

Cf. A000396, A324201, A344005, A368698, A368989 (values of records).

A353308 Numbers k for which A046523(A332223(k)) is equal to A046523(k).

Original entry on oeis.org

1, 2, 9, 14, 15, 38, 39, 57, 68, 70, 92, 106, 110, 111, 125, 129, 130, 156, 170, 183, 190, 213, 230, 242, 245, 267, 275, 338, 350, 380, 393, 416, 441, 455, 494, 518, 522, 532, 572, 579, 585, 590, 595, 627, 638, 646, 650, 682, 686, 722, 740, 754, 782, 790, 850, 855, 879, 902, 946, 950, 957, 969, 994, 1090, 1118, 1227
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that A348717(A332223(k)) = A348717(k) form a subsequence of this sequence. As its subsequence, we further have sequences A005940(1+A336702(n)) and A005940(1+A027687(n)), computed for n >= 1, and sorted into ascending order.

Crossrefs

Cf. A324201 (subsequence), A353363.
Cf. also A019278, A323653.
Previous Showing 21-27 of 27 results.