cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A331785 Lexicographically earliest sequence containing 1 and all positive integers with exactly one prime index already in the sequence, counting multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 11, 14, 21, 26, 31, 34, 35, 38, 39, 43, 46, 51, 57, 58, 65, 69, 73, 74, 77, 82, 85, 87, 94, 95, 98, 101, 106, 111, 115, 118, 122, 123, 127, 134, 139, 141, 142, 143, 145, 147, 149, 158, 159, 163, 166, 167, 177, 178, 182, 183, 185, 187, 191, 194, 199
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}         73: {21}       142: {1,20}     205: {3,13}
    2: {1}        74: {1,12}     143: {5,6}      206: {1,27}
    3: {2}        77: {4,5}      145: {3,10}     209: {5,8}
    5: {3}        82: {1,13}     147: {2,4,4}    213: {2,20}
   11: {5}        85: {3,7}      149: {35}       214: {1,28}
   14: {1,4}      87: {2,10}     158: {1,22}     217: {4,11}
   21: {2,4}      94: {1,15}     159: {2,16}     218: {1,29}
   26: {1,6}      95: {3,8}      163: {38}       226: {1,30}
   31: {11}       98: {1,4,4}    166: {1,23}     233: {51}
   34: {1,7}     101: {26}       167: {39}       235: {3,15}
   35: {3,4}     106: {1,16}     177: {2,17}     237: {2,22}
   38: {1,8}     111: {2,12}     178: {1,24}     238: {1,4,7}
   39: {2,6}     115: {3,9}      182: {1,4,6}    245: {3,4,4}
   43: {14}      118: {1,17}     183: {2,18}     249: {2,23}
   46: {1,9}     122: {1,18}     185: {3,12}     253: {5,9}
   51: {2,7}     123: {2,13}     187: {5,7}      262: {1,32}
   57: {2,8}     127: {31}       191: {43}       265: {3,16}
   58: {1,10}    134: {1,19}     194: {1,25}     266: {1,4,8}
   65: {3,6}     139: {34}       199: {46}       267: {2,24}
   69: {2,9}     141: {2,15}     201: {2,19}     269: {57}
For example, the prime indices of 77 are {4,5}, of which only 5 is in the sequence, so 77 is in the sequence.
		

Crossrefs

Closed under A000040.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with at most one distinct prime index in S are A331912.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aQ[n_]:=n==1||Length[Select[primeMS[n],aQ]]==1;
    Select[Range[100],aQ]

A330946 Odd numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

7, 13, 19, 21, 23, 29, 35, 37, 39, 43, 47, 49, 53, 57, 61, 63, 65, 69, 71, 73, 77, 79, 87, 89, 91, 95, 97, 101, 103, 105, 107, 111, 113, 115, 117, 119, 129, 131, 133, 137, 139, 141, 143, 145, 147, 149, 151, 159, 161, 163, 167, 169, 171, 173, 175, 181, 183, 185
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions whose parts not all singletons (see example).

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   7: {{1,1}}
  13: {{1,2}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  29: {{1,3}}
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  43: {{1,4}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
  61: {{1,2,2}}
  63: {{1},{1},{1,1}}
  65: {{2},{1,2}}
  69: {{1},{2,2}}
  71: {{1,1,3}}
  73: {{2,4}}
		

Crossrefs

Odd numbers n such that A330944(n) > 0.
Including even numbers gives A330945.
The restriction to nonprimes is A330949.
Taking nonprimes instead of odds gives A330947.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[1,100,2],!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A324739 Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(6) = 20 subsets:
  {}  {}   {}   {}     {}       {}
      {2}  {2}  {2}    {2}      {2}
           {3}  {3}    {3}      {3}
                {4}    {4}      {4}
                {2,4}  {5}      {5}
                {3,4}  {2,4}    {6}
                       {2,5}    {2,4}
                       {3,4}    {2,5}
                       {4,5}    {2,6}
                       {2,4,5}  {3,4}
                                {3,6}
                                {4,5}
                                {4,6}
                                {5,6}
                                {2,4,5}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {4,5,6}
                                {2,4,5,6}
		

Crossrefs

The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019

A324749 Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 3, 4, 6, 6, 8, 11, 10, 14, 14, 19, 21, 26, 28, 35, 38, 44, 50, 60, 65, 79, 88, 98, 113, 131, 144, 165, 185, 211, 234, 268, 297, 334, 374, 420, 470, 525, 584, 649, 727, 801, 902, 998, 1100, 1220, 1357, 1500, 1657, 1833, 2029, 2220, 2462
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(10) = 6 strict integer partitions:
  ()  (1)  (2)  (3)  (4)    (5)  (6)    (7)    (8)    (9)    (10)
                     (3,1)       (4,2)  (4,3)  (6,2)  (5,4)  (6,4)
                                 (5,1)  (5,2)  (7,1)  (6,3)  (7,3)
                                        (6,1)         (7,2)  (8,2)
                                                             (9,1)
                                                             (6,3,1)
		

Crossrefs

The subset version is A324738. The non-strict version is A324754. The Heinz number version is A324759. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]

A331913 Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 26, 27, 31, 32, 39, 49, 52, 53, 58, 59, 64, 65, 67, 74, 81, 82, 83, 86, 87, 91, 94, 97, 101, 103, 104, 111, 116, 117, 121, 122, 123, 125, 127, 128, 129, 131, 141, 142, 143, 145, 146, 148, 158, 164, 167, 172, 178
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}          116: {1,1,10}
    2: {1}             53: {16}             117: {2,2,6}
    3: {2}             58: {1,10}           121: {5,5}
    4: {1,1}           59: {17}             122: {1,18}
    5: {3}             64: {1,1,1,1,1,1}    123: {2,13}
    7: {4}             65: {3,6}            125: {3,3,3}
    8: {1,1,1}         67: {19}             127: {31}
    9: {2,2}           74: {1,12}           128: {1,1,1,1,1,1,1}
   11: {5}             81: {2,2,2,2}        129: {2,14}
   16: {1,1,1,1}       82: {1,13}           131: {32}
   17: {7}             83: {23}             141: {2,15}
   19: {8}             86: {1,14}           142: {1,20}
   23: {9}             87: {2,10}           143: {5,6}
   25: {3,3}           91: {4,6}            145: {3,10}
   26: {1,6}           94: {1,15}           146: {1,21}
   27: {2,2,2}         97: {25}             148: {1,1,12}
   31: {11}           101: {26}             158: {1,22}
   32: {1,1,1,1,1}    103: {27}             164: {1,1,13}
   39: {2,6}          104: {1,1,1,6}        167: {39}
   49: {4,4}          111: {2,12}           172: {1,1,14}
		

Crossrefs

Contains all prime powers A000961.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with exactly one prime index in S are A331785.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    aQ[n_]:=n==1||Length[Select[PrimePi/@First/@FactorInteger[n],aQ]]==1;
    Select[Range[200],aQ]

A330949 Odd nonprime numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

21, 35, 39, 49, 57, 63, 65, 69, 77, 87, 91, 95, 105, 111, 115, 117, 119, 129, 133, 141, 143, 145, 147, 159, 161, 169, 171, 175, 183, 185, 189, 195, 203, 207, 209, 213, 215, 217, 219, 221, 231, 235, 237, 245, 247, 253, 259, 261, 265, 267, 273, 285, 287, 291
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions with at least two parts, not all of which are singletons (see example).

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   21: {{1},{1,1}}
   35: {{2},{1,1}}
   39: {{1},{1,2}}
   49: {{1,1},{1,1}}
   57: {{1},{1,1,1}}
   63: {{1},{1},{1,1}}
   65: {{2},{1,2}}
   69: {{1},{2,2}}
   77: {{1,1},{3}}
   87: {{1},{1,3}}
   91: {{1,1},{1,2}}
   95: {{2},{1,1,1}}
  105: {{1},{2},{1,1}}
  111: {{1},{1,1,2}}
  115: {{2},{2,2}}
  117: {{1},{1},{1,2}}
  119: {{1,1},{4}}
  129: {{1},{1,4}}
  133: {{1,1},{1,1,1}}
  141: {{1},{2,3}}
		

Crossrefs

Complement of A106092 in A330945.
Including even numbers gives A330948.
Including primes gives A330946.
The number of prime prime indices is given by A257994.
The number of nonprime prime indices is given by A330944.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[1,100,2],!PrimeQ[#]&&!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A324839 Number of unlabeled rooted identity trees with n nodes where the branches of no branch of the root form a subset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 16, 35, 74, 166, 367, 831, 1878, 4299, 9857, 22775, 52777, 122957, 287337
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.
Also the number of finitary sets with n brackets where no element is also a subset. For example, the a(7) = 8 sets are (o = {}):
{{{{{{o}}}}}}
{{{{o,{o}}}}}
{{{o,{{o}}}}}
{{o,{{{o}}}}}
{{o,{o,{o}}}}
{{{o},{{o}}}}
{{o},{{{o}}}}
{{o},{o,{o}}}

Examples

			The a(1) = 1 through a(8) = 16 rooted identity trees:
  o  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o)(o(o)))    (((o))(o(o)))
                     ((((o))))  ((o((o))))   ((o(o(o))))    (((o)(o(o))))
                                (((((o)))))  ((((o(o)))))   (((o(o(o)))))
                                             (((o)((o))))   ((o)((o(o))))
                                             (((o((o)))))   ((o)(o((o))))
                                             ((o)(((o))))   ((o((o(o)))))
                                             ((o(((o)))))   ((o(o)((o))))
                                             ((((((o))))))  ((o(o((o)))))
                                                            (((((o(o))))))
                                                            ((((o)((o)))))
                                                            ((((o((o))))))
                                                            (((o)(((o)))))
                                                            (((o(((o))))))
                                                            ((o)((((o)))))
                                                            ((o((((o))))))
                                                            (((((((o)))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],And@@Table[!SubsetQ[#,b],{b,#}]&]],{n,10}]

A324845 Matula-Goebel numbers of rooted trees where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 38, 40, 43, 44, 46, 49, 50, 51, 53, 57, 58, 59, 62, 63, 64, 67, 68, 69, 70, 71, 73, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 92, 93, 95, 97, 98, 99, 100, 103, 106
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The sequence of terms together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  14: (o(oo))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    qaQ[n_]:=And[And@@Table[!Divisible[n,x],{x,DeleteCases[primeMS[n],1]}],And@@qaQ/@primeMS[n]];
    Select[Range[100],qaQ]

A306719 Lexicographically earliest sequence containing 2 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.

Original entry on oeis.org

2, 4, 8, 10, 20, 22, 28, 30, 50, 58, 64, 72, 80, 82, 88, 108, 114, 134, 148, 172, 190, 204, 214, 230, 238, 244, 262, 272, 312, 322, 340, 344, 360, 362, 400, 410, 422, 442, 458, 498, 514, 552, 554, 568, 594, 610, 620, 640, 688, 712, 730, 750, 758, 784, 792, 814
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

Formula

a(n) = A324699(n) + 1.
Previous Showing 31-39 of 39 results.