cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 54 results. Next

A331912 Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 26, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 52, 53, 58, 59, 61, 64, 65, 67, 71, 73, 74, 79, 81, 83, 86, 87, 89, 91, 94, 97, 101, 103, 104, 107, 109, 111, 113, 116, 117, 121, 122, 125, 127, 128, 129, 131, 137
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: a(n)/A331784(n) -> 1 as n -> infinity.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              37: {12}              86: {1,14}
    2: {1}             39: {2,6}             87: {2,10}
    3: {2}             41: {13}              89: {24}
    4: {1,1}           43: {14}              91: {4,6}
    5: {3}             47: {15}              94: {1,15}
    7: {4}             49: {4,4}             97: {25}
    8: {1,1,1}         52: {1,1,6}          101: {26}
    9: {2,2}           53: {16}             103: {27}
   11: {5}             58: {1,10}           104: {1,1,1,6}
   13: {6}             59: {17}             107: {28}
   16: {1,1,1,1}       61: {18}             109: {29}
   17: {7}             64: {1,1,1,1,1,1}    111: {2,12}
   19: {8}             65: {3,6}            113: {30}
   23: {9}             67: {19}             116: {1,1,10}
   25: {3,3}           71: {20}             117: {2,2,6}
   26: {1,6}           73: {21}             121: {5,5}
   27: {2,2,2}         74: {1,12}           122: {1,18}
   29: {10}            79: {22}             125: {3,3,3}
   31: {11}            81: {2,2,2,2}        127: {31}
   32: {1,1,1,1,1}     83: {23}             128: {1,1,1,1,1,1,1}
For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
		

Crossrefs

Contains all prime powers A000961.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with exactly one prime index in S are A331785.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;
    Select[Range[100],aQ]

A324699 Lexicographically earliest sequence of positive integers whose prime indices minus 1 already belong to the sequence.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 27, 29, 49, 57, 63, 71, 79, 81, 87, 107, 113, 133, 147, 171, 189, 203, 213, 229, 237, 243, 261, 271, 311, 321, 339, 343, 359, 361, 399, 409, 421, 441, 457, 497, 513, 551, 553, 567, 593, 609, 619, 639, 687, 711, 729, 749, 757, 783, 791, 813
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    3: {2}
    7: {4}
    9: {2,2}
   19: {8}
   21: {2,4}
   27: {2,2,2}
   29: {10}
   49: {4,4}
   57: {2,8}
   63: {2,2,4}
   71: {20}
   79: {22}
   81: {2,2,2,2}
   87: {2,10}
  107: {28}
  113: {30}
  133: {4,8}
  147: {2,4,4}
  171: {2,2,8}
  189: {2,2,2,4}
		

Crossrefs

Programs

Formula

a(n) = A306719(n) - 1.

A324700 Lexicographically earliest sequence containing 0 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.

Original entry on oeis.org

0, 2, 4, 5, 8, 10, 11, 13, 16, 20, 22, 23, 25, 26, 31, 32, 37, 40, 43, 44, 46, 50, 52, 55, 59, 62, 64, 65, 73, 74, 80, 83, 86, 88, 89, 92, 100, 101, 103, 104, 110, 115, 118, 121, 124, 125, 128, 130, 131, 137, 143, 146, 148, 155, 160, 163, 166, 169, 172, 176
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   0
   2: {1}
   4: {1,1}
   5: {3}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
  40: {1,1,1,3}
  43: {14}
  44: {1,1,5}
		

Crossrefs

Programs

Formula

a(n) = A324701(n) - 1.

A324701 Lexicographically earliest sequence containing 1 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 12, 14, 17, 21, 23, 24, 26, 27, 32, 33, 38, 41, 44, 45, 47, 51, 53, 56, 60, 63, 65, 66, 74, 75, 81, 84, 87, 89, 90, 93, 101, 102, 104, 105, 111, 116, 119, 122, 125, 126, 129, 131, 132, 138, 144, 147, 149, 156, 161, 164, 167, 170, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

Formula

a(n) = A324700(n) + 1.

A324702 Lexicographically earliest sequence containing 2 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.

Original entry on oeis.org

2, 5, 13, 25, 43, 65, 101, 125, 169, 193, 215, 317, 325, 505, 557, 559, 625, 701, 845, 965, 1013, 1075, 1181, 1313, 1321, 1585, 1625, 1849, 2111, 2161, 2197, 2509, 2525, 2785, 2795, 3125, 3505, 3617, 4049, 4057, 4121, 4225, 4343, 4639, 4825, 5065, 5297, 5375
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also 2 and numbers whose prime indices belong to A324703.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    5: {3}
   13: {6}
   25: {3,3}
   43: {14}
   65: {3,6}
  101: {26}
  125: {3,3,3}
  169: {6,6}
  193: {44}
  215: {3,14}
  317: {66}
  325: {3,3,6}
  505: {3,26}
  557: {102}
  559: {6,14}
  625: {3,3,3,3}
  701: {126}
  845: {3,6,6}
  965: {3,44}
		

Crossrefs

Programs

Formula

a(n) = A324703(n) - 1.

A324703 Lexicographically earliest sequence containing 3 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.

Original entry on oeis.org

3, 6, 14, 26, 44, 66, 102, 126, 170, 194, 216, 318, 326, 506, 558, 560, 626, 702, 846, 966, 1014, 1076, 1182, 1314, 1322, 1586, 1626, 1850, 2112, 2162, 2198, 2510, 2526, 2786, 2796, 3126, 3506, 3618, 4050, 4058, 4122, 4226, 4344, 4640, 4826, 5066, 5298, 5376
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

Formula

a(n) = A324702(n) + 1.

A324705 Lexicographically earliest sequence containing 1 and all composite numbers divisible by prime(m) for some m already in the sequence.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  34: {1,7}
  35: {3,4}
  36: {1,1,2,2}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=Switch[n,1,True,?PrimeQ,False,,!And@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]]];
    Select[Range[200],aQ]

A331784 Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 83, 87, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 111, 113, 115, 119, 122, 127, 131, 133, 137, 139, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: A331912(n)/a(n) -> 1 as n -> infinity.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}        43: {14}       91: {4,6}      141: {2,15}
    2: {1}       46: {1,9}      94: {1,15}     142: {1,20}
    3: {2}       47: {15}       95: {3,8}      143: {5,6}
    5: {3}       49: {4,4}      97: {25}       145: {3,10}
    7: {4}       53: {16}       98: {1,4,4}    147: {2,4,4}
   11: {5}       57: {2,8}     101: {26}       149: {35}
   13: {6}       58: {1,10}    103: {27}       151: {36}
   14: {1,4}     59: {17}      106: {1,16}     157: {37}
   17: {7}       61: {18}      107: {28}       158: {1,22}
   19: {8}       65: {3,6}     109: {29}       159: {2,16}
   21: {2,4}     67: {19}      111: {2,12}     161: {4,9}
   23: {9}       69: {2,9}     113: {30}       163: {38}
   26: {1,6}     71: {20}      115: {3,9}      167: {39}
   29: {10}      73: {21}      119: {4,7}      169: {6,6}
   31: {11}      74: {1,12}    122: {1,18}     173: {40}
   35: {3,4}     77: {4,5}     127: {31}       178: {1,24}
   37: {12}      79: {22}      131: {32}       179: {41}
   38: {1,8}     83: {23}      133: {4,8}      181: {42}
   39: {2,6}     87: {2,10}    137: {33}       182: {1,4,6}
   41: {13}      89: {24}      139: {34}       183: {2,18}
For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
		

Crossrefs

Contains all prime numbers A000040.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with exactly one prime index in S are A331785.
Numbers S with at most one distinct prime index in S are A331912.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
    Select[Range[100],aQ]

A324763 Number of maximal subsets of {2...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(9) = 6 subsets:
  {}  {2}  {2}  {2,4}  {3,4}    {2,4,5}  {2,4,5}  {2,4,5,8}  {2,4,5,8}
           {3}  {3,4}  {2,4,5}  {3,4,6}  {2,5,7}  {2,5,7,8}  {2,5,7,8}
                                {4,5,6}  {3,4,6}  {3,4,6,8}  {3,4,6,8,9}
                                         {3,6,7}  {3,6,7,8}  {3,6,7,8,9}
                                         {4,5,6}  {4,5,6,8}  {4,5,6,8,9}
                                         {5,6,7}  {5,6,7,8}  {5,6,7,8,9}
		

Crossrefs

The non-maximal version is A324742.
The version for subsets of {1...n} is A324741.
An infinite version is A304360.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
    ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A358453 Number of transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 37, 83, 190, 444, 1051, 2518, 6090, 14852
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be transitive if every branch of a branch of the root already appears farther to the left as a branch of the root. An undirected version is A358454.

Examples

			The a(1) = 1 through a(7) = 17 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)
                (o(o))  (o(o)o)  (o(o)oo)   (o(o)ooo)
                        (o(oo))  (o(oo)o)   (o(oo)oo)
                        (oo(o))  (o(ooo))   (o(ooo)o)
                                 (oo(o)o)   (o(oooo))
                                 (oo(oo))   (oo(o)oo)
                                 (ooo(o))   (oo(oo)o)
                                 (o(o)(o))  (oo(ooo))
                                            (ooo(o)o)
                                            (ooo(oo))
                                            (oooo(o))
                                            (o(o)(o)o)
                                            (o(o)(oo))
                                            (o(o)o(o))
                                            (o(oo)(o))
                                            (oo(o)(o))
                                            (o(o)((o)))
		

Crossrefs

The unordered version is A290689, ranked by A290822.
The undirected version is A358454, ranked by A358458.
These trees are ranked by A358457.
A000081 counts rooted trees.
A306844 counts anti-transitive rooted trees.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]]]],{n,10}]
Previous Showing 21-30 of 54 results. Next