A331912
Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 26, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 52, 53, 58, 59, 61, 64, 65, 67, 71, 73, 74, 79, 81, 83, 86, 87, 89, 91, 94, 97, 101, 103, 104, 107, 109, 111, 113, 116, 117, 121, 122, 125, 127, 128, 129, 131, 137
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 86: {1,14}
2: {1} 39: {2,6} 87: {2,10}
3: {2} 41: {13} 89: {24}
4: {1,1} 43: {14} 91: {4,6}
5: {3} 47: {15} 94: {1,15}
7: {4} 49: {4,4} 97: {25}
8: {1,1,1} 52: {1,1,6} 101: {26}
9: {2,2} 53: {16} 103: {27}
11: {5} 58: {1,10} 104: {1,1,1,6}
13: {6} 59: {17} 107: {28}
16: {1,1,1,1} 61: {18} 109: {29}
17: {7} 64: {1,1,1,1,1,1} 111: {2,12}
19: {8} 65: {3,6} 113: {30}
23: {9} 67: {19} 116: {1,1,10}
25: {3,3} 71: {20} 117: {2,2,6}
26: {1,6} 73: {21} 121: {5,5}
27: {2,2,2} 74: {1,12} 122: {1,18}
29: {10} 79: {22} 125: {3,3,3}
31: {11} 81: {2,2,2,2} 127: {31}
32: {1,1,1,1,1} 83: {23} 128: {1,1,1,1,1,1,1}
For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with exactly one distinct prime index in S are
A331913.
-
aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;
Select[Range[100],aQ]
A324699
Lexicographically earliest sequence of positive integers whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 7, 9, 19, 21, 27, 29, 49, 57, 63, 71, 79, 81, 87, 107, 113, 133, 147, 171, 189, 203, 213, 229, 237, 243, 261, 271, 311, 321, 339, 343, 359, 361, 399, 409, 421, 441, 457, 497, 513, 551, 553, 567, 593, 609, 619, 639, 687, 711, 729, 749, 757, 783, 791, 813
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
7: {4}
9: {2,2}
19: {8}
21: {2,4}
27: {2,2,2}
29: {10}
49: {4,4}
57: {2,8}
63: {2,2,4}
71: {20}
79: {22}
81: {2,2,2,2}
87: {2,10}
107: {28}
113: {30}
133: {4,8}
147: {2,4,4}
171: {2,2,8}
189: {2,2,2,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360,
A306719.
Cf.
A324694,
A324695,
A324696,
A324697,
A324698,
A324700,
A324701,
A324702,
A324703,
A324704,
A324705.
A324700
Lexicographically earliest sequence containing 0 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
0, 2, 4, 5, 8, 10, 11, 13, 16, 20, 22, 23, 25, 26, 31, 32, 37, 40, 43, 44, 46, 50, 52, 55, 59, 62, 64, 65, 73, 74, 80, 83, 86, 88, 89, 92, 100, 101, 103, 104, 110, 115, 118, 121, 124, 125, 128, 130, 131, 137, 143, 146, 148, 155, 160, 163, 166, 169, 172, 176
Offset: 1
The sequence of terms together with their prime indices begins:
0
2: {1}
4: {1,1}
5: {3}
8: {1,1,1}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
20: {1,1,3}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
31: {11}
32: {1,1,1,1,1}
37: {12}
40: {1,1,1,3}
43: {14}
44: {1,1,5}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,True,1,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[0,100],aQ]
A324701
Lexicographically earliest sequence containing 1 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 5, 6, 9, 11, 12, 14, 17, 21, 23, 24, 26, 27, 32, 33, 38, 41, 44, 45, 47, 51, 53, 56, 60, 63, 65, 66, 74, 75, 81, 84, 87, 89, 90, 93, 101, 102, 104, 105, 111, 116, 119, 122, 125, 126, 129, 131, 132, 138, 144, 147, 149, 156, 161, 164, 167, 170, 173, 177
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,100],aQ]
A324702
Lexicographically earliest sequence containing 2 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
2, 5, 13, 25, 43, 65, 101, 125, 169, 193, 215, 317, 325, 505, 557, 559, 625, 701, 845, 965, 1013, 1075, 1181, 1313, 1321, 1585, 1625, 1849, 2111, 2161, 2197, 2509, 2525, 2785, 2795, 3125, 3505, 3617, 4049, 4057, 4121, 4225, 4343, 4639, 4825, 5065, 5297, 5375
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
5: {3}
13: {6}
25: {3,3}
43: {14}
65: {3,6}
101: {26}
125: {3,3,3}
169: {6,6}
193: {44}
215: {3,14}
317: {66}
325: {3,3,6}
505: {3,26}
557: {102}
559: {6,14}
625: {3,3,3,3}
701: {126}
845: {3,6,6}
965: {3,44}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,False,2,True,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[100],aQ]
A324703
Lexicographically earliest sequence containing 3 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
3, 6, 14, 26, 44, 66, 102, 126, 170, 194, 216, 318, 326, 506, 558, 560, 626, 702, 846, 966, 1014, 1076, 1182, 1314, 1322, 1586, 1626, 1850, 2112, 2162, 2198, 2510, 2526, 2786, 2796, 3126, 3506, 3618, 4050, 4058, 4122, 4226, 4344, 4640, 4826, 5066, 5298, 5376
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,3,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,1000],aQ]
A324705
Lexicographically earliest sequence containing 1 and all composite numbers divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,True,?PrimeQ,False,,!And@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]]];
Select[Range[200],aQ]
A331784
Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 83, 87, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 111, 113, 115, 119, 122, 127, 131, 133, 137, 139, 141, 142
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 43: {14} 91: {4,6} 141: {2,15}
2: {1} 46: {1,9} 94: {1,15} 142: {1,20}
3: {2} 47: {15} 95: {3,8} 143: {5,6}
5: {3} 49: {4,4} 97: {25} 145: {3,10}
7: {4} 53: {16} 98: {1,4,4} 147: {2,4,4}
11: {5} 57: {2,8} 101: {26} 149: {35}
13: {6} 58: {1,10} 103: {27} 151: {36}
14: {1,4} 59: {17} 106: {1,16} 157: {37}
17: {7} 61: {18} 107: {28} 158: {1,22}
19: {8} 65: {3,6} 109: {29} 159: {2,16}
21: {2,4} 67: {19} 111: {2,12} 161: {4,9}
23: {9} 69: {2,9} 113: {30} 163: {38}
26: {1,6} 71: {20} 115: {3,9} 167: {39}
29: {10} 73: {21} 119: {4,7} 169: {6,6}
31: {11} 74: {1,12} 122: {1,18} 173: {40}
35: {3,4} 77: {4,5} 127: {31} 178: {1,24}
37: {12} 79: {22} 131: {32} 179: {41}
38: {1,8} 83: {23} 133: {4,8} 181: {42}
39: {2,6} 87: {2,10} 137: {33} 182: {1,4,6}
41: {13} 89: {24} 139: {34} 183: {2,18}
For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
Contains all prime numbers
A000040.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with at most one distinct prime index in S are
A331912.
Numbers S with exactly one distinct prime index in S are
A331913.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
Select[Range[100],aQ]
A324763
Number of maximal subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1
The a(1) = 1 through a(9) = 6 subsets:
{} {2} {2} {2,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8} {2,4,5,8}
{3} {3,4} {2,4,5} {3,4,6} {2,5,7} {2,5,7,8} {2,5,7,8}
{4,5,6} {3,4,6} {3,4,6,8} {3,4,6,8,9}
{3,6,7} {3,6,7,8} {3,6,7,8,9}
{4,5,6} {4,5,6,8} {4,5,6,8,9}
{5,6,7} {5,6,7,8} {5,6,7,8,9}
The non-maximal version is
A324742.
The version for subsets of {1...n} is
A324741.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019
A358453
Number of transitive ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 17, 37, 83, 190, 444, 1051, 2518, 6090, 14852
Offset: 1
The a(1) = 1 through a(7) = 17 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(o)o) (o(o)oo) (o(o)ooo)
(o(oo)) (o(oo)o) (o(oo)oo)
(oo(o)) (o(ooo)) (o(ooo)o)
(oo(o)o) (o(oooo))
(oo(oo)) (oo(o)oo)
(ooo(o)) (oo(oo)o)
(o(o)(o)) (oo(ooo))
(ooo(o)o)
(ooo(oo))
(oooo(o))
(o(o)(o)o)
(o(o)(oo))
(o(o)o(o))
(o(oo)(o))
(oo(o)(o))
(o(o)((o)))
A306844 counts anti-transitive rooted trees.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]]]],{n,10}]
Comments