cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A357876 The run-sums of the prime indices of n are not weakly increasing.

Original entry on oeis.org

24, 45, 48, 80, 90, 96, 120, 135, 160, 168, 175, 180, 189, 192, 224, 240, 264, 270, 275, 288, 297, 312, 315, 320, 336, 350, 360, 378, 384, 405, 408, 448, 456, 480, 495, 525, 528, 539, 540, 550, 552, 560, 567, 576, 585, 594, 600, 624, 630, 637, 640, 672, 696
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   45: {2,2,3}
   48: {1,1,1,1,2}
   80: {1,1,1,1,3}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  120: {1,1,1,2,3}
  135: {2,2,2,3}
  160: {1,1,1,1,1,3}
  168: {1,1,1,2,4}
  175: {3,3,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  192: {1,1,1,1,1,1,2}
For example, the prime indices of 24 are (1,1,1,2), with run-sums (3,2), which are not weakly increasing, so 24 is in the sequence.
		

Crossrefs

These are the indices of rows in A354584 that are not weakly increasing.
The complement is A357875.
These partitions are counted by A357878.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!LessEqual@@Total/@Split[primeMS[#]]&]

A325264 Numbers whose omega-sequence sums to 7.

Original entry on oeis.org

30, 36, 42, 64, 66, 70, 78, 100, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 196, 222, 225, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their prime indices and omega-sequences begins:
   30: {1,2,3} (3,3,1)
   36: {1,1,2,2} (4,2,1)
   42: {1,2,4} (3,3,1)
   64: {1,1,1,1,1,1} (6,1)
   66: {1,2,5} (3,3,1)
   70: {1,3,4} (3,3,1)
   78: {1,2,6} (3,3,1)
  100: {1,1,3,3} (4,2,1)
  102: {1,2,7} (3,3,1)
  105: {2,3,4} (3,3,1)
  110: {1,3,5} (3,3,1)
  114: {1,2,8} (3,3,1)
  130: {1,3,6} (3,3,1)
  138: {1,2,9} (3,3,1)
  154: {1,4,5} (3,3,1)
  165: {2,3,5} (3,3,1)
  170: {1,3,7} (3,3,1)
  174: {1,2,10} (3,3,1)
  182: {1,4,6} (3,3,1)
  186: {1,2,11} (3,3,1)
  190: {1,3,8} (3,3,1)
  195: {2,3,6} (3,3,1)
  196: {1,1,4,4} (4,2,1)
		

Crossrefs

Positions of 7's in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]==7&]

A325281 Numbers of the form a*b, a*a*b, or a*a*b*c where a, b, and c are distinct primes. Numbers with sorted prime signature (1,1), (1,2), or (1,1,2).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

Also numbers whose adjusted frequency depth is one plus their number of prime factors counted with multiplicity. The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length plus 1. The enumeration of these partitions by sum is given by A127002.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   6:     {1,2} (2,2,1)
  10:     {1,3} (2,2,1)
  12:   {1,1,2} (3,2,2,1)
  14:     {1,4} (2,2,1)
  15:     {2,3} (2,2,1)
  18:   {1,2,2} (3,2,2,1)
  20:   {1,1,3} (3,2,2,1)
  21:     {2,4} (2,2,1)
  22:     {1,5} (2,2,1)
  26:     {1,6} (2,2,1)
  28:   {1,1,4} (3,2,2,1)
  33:     {2,5} (2,2,1)
  34:     {1,7} (2,2,1)
  35:     {3,4} (2,2,1)
  38:     {1,8} (2,2,1)
  39:     {2,6} (2,2,1)
  44:   {1,1,5} (3,2,2,1)
  45:   {2,2,3} (3,2,2,1)
  46:     {1,9} (2,2,1)
  50:   {1,3,3} (3,2,2,1)
  51:     {2,7} (2,2,1)
  52:   {1,1,6} (3,2,2,1)
  55:     {3,5} (2,2,1)
  57:     {2,8} (2,2,1)
  58:    {1,10} (2,2,1)
  60: {1,1,2,3} (4,3,2,2,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]+1&]

A325414 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with omega-sequence summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 4, 2, 2, 1, 1, 0, 1, 0, 1, 0, 4, 0, 3, 3, 2, 2, 2, 3, 1, 0, 1, 0, 0, 1, 4, 0, 3, 3, 3, 4, 1, 6, 3, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13, so (32211) is counted under T(9,13).

Examples

			Triangle begins:
  1
  0 1
  0 1 0 1
  0 1 0 0 1 1
  0 1 0 1 0 2 0 0 1
  0 1 0 0 0 2 1 0 2 1
  0 1 0 1 1 2 0 3 1 1 1
  0 1 0 0 0 3 0 1 4 2 2 1 1
  0 1 0 1 0 4 0 3 3 2 2 2 3 1
  0 1 0 0 1 4 0 3 3 3 4 1 6 3 1
  0 1 0 1 0 4 1 6 4 4 1 4 5 8 2 1
Row n = 9 counts the following partitions:
  9  333  54  432  441  3222    22221      411111  3321     32211     321111
          63  531  522  6111    33111              4221     42111
          72  621  711  222111  51111              4311     21111111
          81                    111111111          5211
                                                   2211111
                                                   3111111
		

Crossrefs

Row sums are A000041.
Row lengths are A325413(n) + 1 (because k starts at 0).
Number of nonzero terms in row n is A325415(n).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],Total[omseq[#]]==k&]],{n,0,10},{k,0,Max[Total/@omseq/@IntegerPartitions[n]]}]

A325262 Number of integer partitions of n whose omega-sequence does not cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 6, 7, 12, 18, 29, 38, 58, 77, 110, 145, 198, 257, 345, 441, 576, 733, 942, 1184, 1503, 1875, 2352, 2914, 3620, 4454, 5493, 6716, 8221, 10001, 12167, 14723, 17816, 21459, 25836, 30988, 37139, 44365, 52956, 63022, 74934, 88873, 105296, 124469
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).

Examples

			The a(3) = 1 through a(9) = 18 partitions:
  (111)  (1111)  (2111)   (222)     (421)      (431)       (333)
                 (11111)  (321)     (2221)     (521)       (432)
                          (2211)    (4111)     (2222)      (531)
                          (3111)    (22111)    (3311)      (621)
                          (21111)   (31111)    (5111)      (3222)
                          (111111)  (211111)   (22211)     (6111)
                                    (1111111)  (32111)     (22221)
                                               (41111)     (32211)
                                               (221111)    (33111)
                                               (311111)    (42111)
                                               (2111111)   (51111)
                                               (11111111)  (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325249 (sum).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],!normQ[omseq[#]]&]],{n,0,30}]

A325413 Largest sum of the omega-sequence of an integer partition of n.

Original entry on oeis.org

0, 1, 3, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13.
Appears to contain all nonnegative integers except 2, 4, 6, 7, and 11.

Examples

			The partitions of 9 organized by sum of omega-sequence (first column) are:
   1: (9)
   4: (333)
   5: (81) (72) (63) (54)
   7: (621) (531) (432)
   8: (711) (522) (441)
   9: (6111) (3222) (222111)
  10: (51111) (33111) (22221) (111111111)
  11: (411111)
  12: (5211) (4311) (4221) (3321) (3111111) (2211111)
  13: (42111) (32211) (21111111)
  14: (321111)
The largest term in the first column is 14, so a(9) = 14.
		

Crossrefs

Row lengths of A325414.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Max[Total/@omseq/@IntegerPartitions[n]],{n,0,30}]

A325415 Number of distinct sums of omega-sequences of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 10, 11, 13, 12, 15, 14, 16, 18, 18, 18, 21, 20, 23, 23, 24, 24, 27, 27, 28, 29, 30, 30, 34, 32, 34, 35, 36, 37, 39, 38, 40, 41, 43, 42, 45, 44, 46, 48, 48, 48, 51, 50, 53, 53, 54, 54, 57, 57, 58, 59, 60, 60, 64
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13.

Examples

			The partitions of 9 organized by sum of omega sequence (first column) are:
   1: (9)
   4: (333)
   5: (81) (72) (63) (54)
   7: (621) (531) (432)
   8: (711) (522) (441)
   9: (6111) (3222) (222111)
  10: (51111) (33111) (22221) (111111111)
  11: (411111)
  12: (5211) (4311) (4221) (3321) (3111111) (2211111)
  13: (42111) (32211) (21111111)
  14: (321111)
There are a total of 11 distinct sums {1,4,5,7,8,9,10,11,12,13,14}, so a(9) = 11.
		

Crossrefs

Number of nonzero terms in row n of A325414.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Union[Total/@omseq/@IntegerPartitions[n]]],{n,0,30}]

A325416 Least k such that the omega-sequence of k sums to n, and 0 if none exists.

Original entry on oeis.org

1, 2, 0, 4, 8, 6, 32, 30, 12, 24, 48, 96, 60, 120, 240, 480, 960, 1920, 3840, 2520, 5040, 10080, 20160, 40320, 80640
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1) with sum 13.

Examples

			The sequence of terms together with their omega-sequences (n = 2 term not shown) begins:
     1:
     2:  1
     4:  2 1
     8:  3 1
     6:  2 2 1
    32:  5 1
    30:  3 3 1
    12:  3 2 2 1
    24:  4 2 2 1
    48:  5 2 2 1
    96:  6 2 2 1
    60:  4 3 2 2 1
   120:  5 3 2 2 1
   240:  6 3 2 2 1
   480:  7 3 2 2 1
   960:  8 3 2 2 1
  1920:  9 3 2 2 1
  3840: 10 3 2 2 1
  2520:  7 4 3 2 2 1
  5040:  8 4 3 2 2 1
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    da=Table[Total[omseq[n]],{n,10000}];
    Table[If[!MemberQ[da,k],0,Position[da,k][[1,1]]],{k,0,Max@@da}]

A325757 Irregular triangle read by rows giving the frequency span of n.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 3, 2, 2, 2, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 2, 2, 6, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 2, 2, 2, 2, 8, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 1, 1, 1, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150).

Examples

			Triangle begins:
   1:
   2: 1
   3: 2
   4: 1 1 2
   5: 3
   6: 1 1 1 2 2
   7: 4
   8: 1 1 1 3
   9: 2 2 2
  10: 1 1 1 2 3
  11: 5
  12: 1 1 1 1 1 2 2 2
  13: 6
  14: 1 1 1 2 4
  15: 1 1 2 2 3
  16: 1 1 1 1 4
  17: 7
  18: 1 1 1 1 2 2 2 2
  19: 8
  20: 1 1 1 1 1 2 2 3
  21: 1 1 2 2 4
  22: 1 1 1 2 5
  23: 9
  24: 1 1 1 1 1 1 2 2 3
  25: 2 3 3
  26: 1 1 1 2 6
  27: 2 2 2 3
  28: 1 1 1 1 1 2 2 4
		

Crossrefs

Row lengths are A325249.
Run-lengths are A325758.
Number of distinct terms in row n is A325759(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[freqspan[primeMS[n]],{n,15}]

A325758 Irregular triangle read by rows giving the frequency span signature of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 3, 3, 1, 1, 1, 5, 3, 1, 3, 1, 1, 2, 2, 1, 4, 1, 1, 4, 4, 1, 5, 2, 1, 2, 2, 1, 3, 1, 1, 1, 6, 2, 1, 1, 2, 3, 1, 1, 3, 1, 5, 2, 1, 1, 4, 1, 2, 1, 5, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 2, 5, 1, 3, 1, 1, 2, 2, 1, 6, 1, 2, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150). Row n of this triangle gives an unsorted list of the multiplicities in the frequency span of n. For example, the frequency span of 30 is {1,1,1,1,2,3,3}, so row 30 is (4,1,2).

Examples

			Triangle begins:
  1
  1
  2 1
  1
  3 2
  1
  3 1
  3
  3 1 1
  1
  5 3
  1
  3 1 1
  2 2 1
  4 1
  1
  4 4
  1
  5 2 1
  2 2 1
  3 1 1
  1
  6 2 1
  1 2
  3 1 1
  3 1
  5 2 1
  1
  4 1 2
		

Crossrefs

Row sums are A325249.
Row lengths are A325759.
Run-lengths of A325757.
Row n is the unsorted prime signature of A325760(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[Length/@Split[freqspan[primeMS[n]]],{n,30}]
Previous Showing 11-20 of 28 results. Next