cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A325369 Numbers with no two prime exponents appearing the same number of times in the prime signature.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities. The enumeration of these partitions by sum is given by A325329.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  80: {1,1,1,1,3}
  88: {1,1,1,5}
For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A337069 Number of strict factorizations of the superprimorial A006939(n).

Original entry on oeis.org

1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
Also the number of strict multiset partitions of {1,2,2,3,3,3,...,n}, a multiset with i copies of i for i = 1..n.

Examples

			The a(3) = 34 factorizations:
  2*3*4*15  2*3*60   2*180  360
  2*3*5*12  2*4*45   3*120
  2*3*6*10  2*5*36   4*90
  2*4*5*9   2*6*30   5*72
  3*4*5*6   2*9*20   6*60
            2*10*18  8*45
            2*12*15  9*40
            3*4*30   10*36
            3*5*24   12*30
            3*6*20   15*24
            3*8*15   18*20
            3*10*12
            4*5*18
            4*6*15
            4*9*10
            5*6*12
            5*8*9
		

Crossrefs

A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A317829 is the non-strict version.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A181818 lists products of superprimorials, with complement A336426.
A322583 counts factorizations into factorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[stfa[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318286 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A045778(A006939(n)).
a(n) = A318286(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A325330 Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions whose parts cover an initial interval of positive integers are counted by A000009, with Heinz numbers A055932. Partitions whose multiplicities cover an initial interval of positive integers are counted by A317081, with Heinz numbers A317090. Partitions whose parts and multiplicities both cover an initial interval of positive integers are counted by A317088, with Heinz numbers A317089. Partitions whose multiplicities at every depth cover an initial interval of positive integers are counted by A317245, with Heinz numbers A317246.
The Heinz numbers of these partitions are given by A325370.

Examples

			The a(0) = 1 through a(8) = 16 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (221)    (33)      (322)      (44)
                        (211)   (311)    (222)     (331)      (332)
                        (1111)  (2111)   (411)     (511)      (422)
                                (11111)  (3111)    (2221)     (611)
                                         (21111)   (3211)     (2222)
                                         (111111)  (4111)     (3221)
                                                   (22111)    (4211)
                                                   (31111)    (5111)
                                                   (211111)   (22211)
                                                   (1111111)  (32111)
                                                              (41111)
                                                              (221111)
                                                              (311111)
                                                              (2111111)
                                                              (11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]

A342521 Heinz numbers of integer partitions with distinct first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  100: {1,1,3,3}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A130091.
For differences instead of quotients we have A325368 (count: A325325).
These partitions are counted by A342514 (strict: A342520, ordered: A342529).
The equal instead of distinct version is A342522.
The version counting strict divisor chains is A342530.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A325331 Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions with distinct multiplicities that cover an initial interval of positive integers are counted by A320348, with Heinz numbers A325337. Partitions whose multiplicities appear with distinct multiplicities are counted by A325329, with Heinz numbers A325369. Partitions whose multiplicities appear with multiplicities that cover an initial interval of positive integers of counted by A325330, with Heinz numbers A325370.
The Heinz numbers of these partitions are given by A325371.

Examples

			The a(0) = 1 through a(8) = 7 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (3211)     (44)
                        (1111)           (222)     (1111111)  (2222)
                                         (111111)             (3221)
                                                              (4211)
                                                              (32111)
                                                              (11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]

A325371 Numbers whose prime signature has multiplicities of its parts all distinct and covering an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 126, 127, 128, 131, 132, 137, 139, 140, 149, 150, 151, 156, 157, 163
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The first term that is not 1 or a prime power is 60.
The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
Numbers whose prime signature has distinct parts that cover an initial interval are given by A325337.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325331.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],normQ[Length/@Split[Sort[Last/@FactorInteger[#]]]]&&UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A337072 Number of factorizations of the superprimorial A006939(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 2, 10, 141, 6769, 1298995, 1148840085, 5307091649182, 143026276277298216, 24801104674619158730662, 30190572492693121799801655311, 278937095127086600900558327826721594
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1), which has n! divisors.
Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of the superprimorial A006939(n).

Examples

			The a(1) = 1 through a(3) = 10 factorizations:
    2  2*6    2*6*30
       2*2*3  6*6*10
              2*5*6*6
              2*2*3*30
              2*2*6*15
              2*3*6*10
              2*2*3*5*6
              2*2*2*3*15
              2*2*3*3*10
              2*2*2*3*3*5
The a(1) = 1 through a(3) = 10 set multipartitions:
     {1}  {1}{12}    {1}{12}{123}
          {1}{1}{2}  {12}{12}{13}
                     {1}{1}{12}{23}
                     {1}{1}{2}{123}
                     {1}{2}{12}{13}
                     {1}{3}{12}{12}
                     {1}{1}{1}{2}{23}
                     {1}{1}{2}{2}{13}
                     {1}{1}{2}{3}{12}
                     {1}{1}{1}{2}{2}{3}
		

Crossrefs

A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103774 is the version for factorials instead of superprimorials.
A337073 is the strict case (strict factorizations into squarefree numbers).
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    facsqf[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsqf[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[facsqf[chern[n]]],{n,0,3}]
  • PARI
    \\ See A318360 for count.
    a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020

Formula

a(n) = A050320(A006939(n)).
a(n) = A318360(A002110(n)). - Andrew Howroyd, Aug 31 2020

Extensions

a(7)-a(12) from Andrew Howroyd, Aug 31 2020

A337073 Number of strict factorizations of the superprimorial A006939(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 2, 14, 422, 59433, 43181280, 178025660042, 4550598470020490, 782250333882971717562, 974196106965358319940100513, 9412280190038329162111356578977100, 751537739224674099813783040471383322758327
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). It has n! divisors.
Also the number of strict set multipartitions (sets of sets) of the multiset of prime factors of the superprimorial A006939(n).

Examples

			The a(1) = 1 through a(3) = 10 factorizations:
    2  2*6  2*6*30    2*6*30*210
            2*3*6*10  6*10*30*42
                      2*3*6*30*70
                      2*5*6*30*42
                      2*3*10*30*42
                      2*3*6*10*210
                      2*6*10*15*42
                      2*6*10*21*30
                      2*6*14*15*30
                      3*6*10*14*30
                      2*3*5*6*10*42
                      2*3*5*6*14*30
                      2*3*6*7*10*30
                      2*3*6*10*14*15
The a(1) = 1 through a(3) = 14 set multipartitions:
    {1}  {1}{12}  {1}{12}{123}    {1}{12}{123}{1234}
                  {1}{2}{12}{13}  {12}{13}{123}{124}
                                  {1}{12}{13}{23}{124}
                                  {1}{12}{13}{24}{123}
                                  {1}{12}{14}{23}{123}
                                  {1}{2}{12}{123}{134}
                                  {1}{2}{12}{13}{1234}
                                  {1}{2}{13}{123}{124}
                                  {1}{3}{12}{123}{124}
                                  {2}{12}{13}{14}{123}
                                  {1}{2}{12}{13}{14}{23}
                                  {1}{2}{12}{4}{13}{123}
                                  {1}{2}{3}{12}{13}{124}
                                  {1}{2}{3}{12}{14}{123}
		

Crossrefs

A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103775 is the version for factorials instead of superprimorials.
A337072 is the non-strict version.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A050342 counts strict set multipartitions of integer partitions.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A283877 counts non-isomorphic strict set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    ystfac[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[ystfac[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[ystfac[chern[n]]],{n,0,4}]
  • PARI
    \\ See A318361 for count.
    a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020

Formula

a(n) = A050326(A006939(n)).
a(n) = A318361(A002110(n)). - Andrew Howroyd, Sep 01 2020

Extensions

a(7)-a(13) from Andrew Howroyd, Sep 01 2020

A384180 Irregular triangle read by rows where row n lists the Heinz numbers of all uniform (equal multiplicities) and normal (covering an initial interval) multisets of length n.

Original entry on oeis.org

2, 4, 6, 8, 30, 16, 36, 210, 32, 2310, 64, 216, 900, 30030, 128, 510510, 256, 1296, 44100, 9699690, 512, 27000, 223092870, 1024, 7776, 5336100, 6469693230, 2048, 200560490130, 4096, 46656, 810000, 9261000, 901800900, 7420738134810, 8192, 304250263527210
Offset: 1

Views

Author

Gus Wiseman, May 25 2025

Keywords

Comments

A permutation of A100778 (powers of primorials).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is uniform iff all parts appear with the same multiplicity, and normal iff it covers an initial interval of positive integers.

Examples

			The uniform normal multisets of length 6 are: {1,1,1,1,1,1}, {1,1,1,2,2,2}, {1,1,2,2,3,3}, {1,2,3,4,5,6}, so row 6 is: 64, 216, 900, 30030.
Triangle begins:
    2
    4       6
    8      30
   16      36    210
   32    2310
   64     216    900    30030
  128  510510
  256    1296  44100  9699690
		

Crossrefs

Row lengths are A000005.
Final term in each row is A002110.
The union is A100778.
Reversing rows gives A322792.
For just normal multisets we have A324939.
A047966 counts uniform partitions.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A381431 is the section-sum transform.

Programs

  • Mathematica
    Table[Table[Times@@Prime/@Range[d]^(n/d),{d,Divisors[n]}],{n,10}]
Previous Showing 11-19 of 19 results.