A325369
Numbers with no two prime exponents appearing the same number of times in the prime signature.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1
Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
54: {1,2,2,2}
56: {1,1,1,4}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
76: {1,1,8}
80: {1,1,1,1,3}
88: {1,1,1,5}
For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence.
Cf.
A056239,
A098859,
A112798,
A118914,
A130091,
A317090,
A319161,
A325326,
A325329,
A325331,
A325337,
A325370,
A325371.
A337069
Number of strict factorizations of the superprimorial A006939(n).
Original entry on oeis.org
1, 1, 3, 34, 1591, 360144, 442349835, 3255845551937, 156795416820025934, 53452979022001011490033, 138542156296245533221812350867, 2914321438328993304235584538307144802, 528454951438415221505169213611461783474874149, 873544754831735539240447436467067438924478174290477803
Offset: 0
The a(3) = 34 factorizations:
2*3*4*15 2*3*60 2*180 360
2*3*5*12 2*4*45 3*120
2*3*6*10 2*5*36 4*90
2*4*5*9 2*6*30 5*72
3*4*5*6 2*9*20 6*60
2*10*18 8*45
2*12*15 9*40
3*4*30 10*36
3*5*24 12*30
3*6*20 15*24
3*8*15 18*20
3*10*12
4*5*18
4*6*15
4*9*10
5*6*12
5*8*9
A022915 counts permutations of the same multiset.
A157612 is the version for factorials instead of superprimorials.
A337072 is the non-strict version with squarefree factors.
A337073 is the case with squarefree factors.
A000217 counts prime factors (with multiplicity) of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A322583 counts factorizations into factorials.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
stfa[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfa[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
Table[Length[stfa[chern[n]]],{n,0,3}]
-
\\ See A318286 for count.
a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020
A325330
Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0
The a(0) = 1 through a(8) = 16 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (2111) (411) (511) (422)
(11111) (3111) (2221) (611)
(21111) (3211) (2222)
(111111) (4111) (3221)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
Cf.
A000837,
A055932,
A317081,
A317088,
A317089,
A317090,
A317245,
A320348,
A325331,
A325333,
A325337,
A325370.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]
A342521
Heinz numbers of integer partitions with distinct first quotients.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1
The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
84: {1,1,2,4}
88: {1,1,1,5}
96: {1,1,1,1,1,2}
100: {1,1,3,3}
For multiplicities (prime signature) instead of quotients we have
A130091.
For differences instead of quotients we have
A325368 (count:
A325325).
The equal instead of distinct version is
A342522.
The version counting strict divisor chains is
A342530.
A167865 counts strict chains of divisors > 1 summing to n.
A318991/
A318992 rank reversed partitions with/without integer quotients.
Cf.
A003242,
A005117,
A056239,
A067824,
A098859,
A112798,
A169594,
A253249,
A325326,
A325337,
A325405.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
A325331
Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0
The a(0) = 1 through a(8) = 7 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (3211) (44)
(1111) (222) (1111111) (2222)
(111111) (3221)
(4211)
(32111)
(11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
Cf.
A098859,
A130091,
A317081,
A317090,
A320348,
A325329,
A325330,
A325337,
A325369,
A325370,
A325371.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
A325371
Numbers whose prime signature has multiplicities of its parts all distinct and covering an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 126, 127, 128, 131, 132, 137, 139, 140, 149, 150, 151, 156, 157, 163
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
37: {12}
Cf.
A055932,
A056239,
A098859,
A112798,
A118914,
A130091,
A317090,
A325329,
A325330,
A325331,
A325337,
A325369,
A325370.
A337072
Number of factorizations of the superprimorial A006939(n) into squarefree numbers > 1.
Original entry on oeis.org
1, 1, 2, 10, 141, 6769, 1298995, 1148840085, 5307091649182, 143026276277298216, 24801104674619158730662, 30190572492693121799801655311, 278937095127086600900558327826721594
Offset: 0
The a(1) = 1 through a(3) = 10 factorizations:
2 2*6 2*6*30
2*2*3 6*6*10
2*5*6*6
2*2*3*30
2*2*6*15
2*3*6*10
2*2*3*5*6
2*2*2*3*15
2*2*3*3*10
2*2*2*3*3*5
The a(1) = 1 through a(3) = 10 set multipartitions:
{1} {1}{12} {1}{12}{123}
{1}{1}{2} {12}{12}{13}
{1}{1}{12}{23}
{1}{1}{2}{123}
{1}{2}{12}{13}
{1}{3}{12}{12}
{1}{1}{1}{2}{23}
{1}{1}{2}{2}{13}
{1}{1}{2}{3}{12}
{1}{1}{1}{2}{2}{3}
A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103774 is the version for factorials instead of superprimorials.
A337073 is the strict case (strict factorizations into squarefree numbers).
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
facsqf[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsqf[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[facsqf[chern[n]]],{n,0,3}]
-
\\ See A318360 for count.
a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020
A337073
Number of strict factorizations of the superprimorial A006939(n) into squarefree numbers > 1.
Original entry on oeis.org
1, 1, 1, 2, 14, 422, 59433, 43181280, 178025660042, 4550598470020490, 782250333882971717562, 974196106965358319940100513, 9412280190038329162111356578977100, 751537739224674099813783040471383322758327
Offset: 0
The a(1) = 1 through a(3) = 10 factorizations:
2 2*6 2*6*30 2*6*30*210
2*3*6*10 6*10*30*42
2*3*6*30*70
2*5*6*30*42
2*3*10*30*42
2*3*6*10*210
2*6*10*15*42
2*6*10*21*30
2*6*14*15*30
3*6*10*14*30
2*3*5*6*10*42
2*3*5*6*14*30
2*3*6*7*10*30
2*3*6*10*14*15
The a(1) = 1 through a(3) = 14 set multipartitions:
{1} {1}{12} {1}{12}{123} {1}{12}{123}{1234}
{1}{2}{12}{13} {12}{13}{123}{124}
{1}{12}{13}{23}{124}
{1}{12}{13}{24}{123}
{1}{12}{14}{23}{123}
{1}{2}{12}{123}{134}
{1}{2}{12}{13}{1234}
{1}{2}{13}{123}{124}
{1}{3}{12}{123}{124}
{2}{12}{13}{14}{123}
{1}{2}{12}{13}{14}{23}
{1}{2}{12}{4}{13}{123}
{1}{2}{3}{12}{13}{124}
{1}{2}{3}{12}{14}{123}
A000142 counts divisors of superprimorials.
A022915 counts permutations of the same multiset.
A103775 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A045778 counts strict factorizations.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A050342 counts strict set multipartitions of integer partitions.
A283877 counts non-isomorphic strict set multipartitions.
A317829 counts factorizations of superprimorials.
A337069 counts strict factorizations of superprimorials.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
ystfac[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[ystfac[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[ystfac[chern[n]]],{n,0,4}]
-
\\ See A318361 for count.
a(n) = {if(n==0, 1, count(vector(n, i, i)))} \\ Andrew Howroyd, Sep 01 2020
A384180
Irregular triangle read by rows where row n lists the Heinz numbers of all uniform (equal multiplicities) and normal (covering an initial interval) multisets of length n.
Original entry on oeis.org
2, 4, 6, 8, 30, 16, 36, 210, 32, 2310, 64, 216, 900, 30030, 128, 510510, 256, 1296, 44100, 9699690, 512, 27000, 223092870, 1024, 7776, 5336100, 6469693230, 2048, 200560490130, 4096, 46656, 810000, 9261000, 901800900, 7420738134810, 8192, 304250263527210
Offset: 1
The uniform normal multisets of length 6 are: {1,1,1,1,1,1}, {1,1,1,2,2,2}, {1,1,2,2,3,3}, {1,2,3,4,5,6}, so row 6 is: 64, 216, 900, 30030.
Triangle begins:
2
4 6
8 30
16 36 210
32 2310
64 216 900 30030
128 510510
256 1296 44100 9699690
For just normal multisets we have
A324939.
A381431 is the section-sum transform.
-
Table[Table[Times@@Prime/@Range[d]^(n/d),{d,Divisors[n]}],{n,10}]
Comments