cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 107 results. Next

A362617 Numbers whose prime factorization has both (1) even length, and (2) unequal middle parts.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166, 177
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is not a prime factor of n, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 60 is 2*2*3*5, with middle parts (2,3), so 60 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238479.
The complement (without 1) is A362618, counted by A238478.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362605 ranks partitions with more than one mode, counted by A362607.
A362611 counts modes in prime factorization, triangle version A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.
Contains A006881 and (except for 1) A030229.

Programs

  • Maple
    filter:= proc(n) local F,m;
      F:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(F);
      m::even and F[m/2] <> F[m/2+1]
    end proc:
    select(filter, [$2..200]); # Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[prifacs[#],Median[prifacs[#]]]&]

A363721 Number of odd-length integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 5, 7, 1, 2, 8, 2, 9, 16, 11, 2, 2, 15, 16, 37, 33, 2, 44, 2, 1, 79, 33, 103, 127, 2, 47, 166, 39, 2, 214, 2, 384, 738, 90, 2, 2, 277, 185, 631, 1077, 2, 1065, 1560, 477, 1156, 223, 2, 2863
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2023

Keywords

Comments

The median of an odd-length partition is the middle part.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = {1, 3, 9, 14, 15, 18, 20, 22} (A..M = 10..22):
  1  3    9          E        F                I          K      M
     111  333        2222222  555              666        44444  22222222222
          111111111  3222221  33333            222222222  54443  32222222221
                     3322211  43332            322222221  64442  33222222211
                     4222211  53331            332222211  65441  33322222111
                              63321            422222211  74432  42222222211
                              111111111111111  432222111  74441  43222222111
                                               522222111  84431  44222221111
                                                          94421  52222222111
                                                                 53222221111
                                                                 62222221111
		

Crossrefs

All odd-length partitions are counted by A027193.
For just (mean) = (median) we have A359895, also A240219, A359899, A359910.
For just (mean) != (median) we have A359896, also A359894, A359900.
Allowing any length gives A363719, ranks A363727, non-constant A363728.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.
A363726 counts odd-length partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A363726 Number of odd-length integer partitions of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 26, 39, 50, 67, 86, 118, 148, 196, 245, 315, 394, 507, 629, 792, 979, 1231, 1503, 1873, 2286, 2814, 3424, 4194, 5073, 6183, 7449, 9014, 10827, 13055, 15603, 18713, 22308, 26631, 31646, 37641, 44559, 52835, 62374, 73671
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)
            (111)  (211)  (221)    (222)    (322)      (332)
                          (311)    (411)    (331)      (422)
                          (11111)  (21111)  (511)      (611)
                                            (22111)    (22211)
                                            (31111)    (32111)
                                            (1111111)  (41111)
                                                       (2111111)
		

Crossrefs

The constant case is A001227.
Allowing multiple modes gives A027193, ranks A026424.
Allowing any length gives A362608, ranks A356862.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&OddQ[Length[#]]&]],{n,30}]

A360456 Number of integer partitions of n for which the parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 10 partitions:
  1   .  .  22   .  .  2221   3311    333      4222      5222
                              32111   3222     33211     33221
                                      32211    42211     52211
                                      42111    43111     53111
                                      321111   52111     62111
                                               421111    322211
                                               3211111   431111
                                                         521111
                                                         4211111
                                                         32111111
		

Crossrefs

For mean instead of median: A360068, ranks A359903.
For distinct parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360454.
For distinct parts instead of parts: A360455, ranks A360453.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]

A362558 Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2.

Original entry on oeis.org

1, 1, 1, 3, 2, 7, 6, 15, 11, 30, 27, 56, 44, 101, 93, 176, 149, 297, 271, 490, 432, 792, 744, 1255, 1109, 1958, 1849, 3010, 2764, 4565, 4287, 6842, 6328, 10143, 9673, 14883, 13853, 21637, 20717, 31185, 29343, 44583, 42609, 63261, 60100, 89134, 85893, 124754
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

Also the number of n-multisets of positive integers that (1) have integer median, (2) cover an initial interval, and (3) have weakly decreasing multiplicities.

Examples

			The a(1) = 1 through a(7) = 15 partitions:
  (1)  (2)  (3)    (4)   (5)      (6)     (7)
            (21)   (31)  (32)     (42)    (43)
            (111)        (41)     (51)    (52)
                         (221)    (222)   (61)
                         (311)    (411)   (322)
                         (2111)   (2211)  (331)
                         (11111)          (421)
                                          (511)
                                          (2221)
                                          (3211)
                                          (4111)
                                          (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(8).
		

Crossrefs

The odd bisection is A058695.
The version for compositions is A213173.
The complement is counted by A322439 aerated.
The even bisection is A362051.
For mean instead of median we have A362559.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Accumulate[#],n/2]&]],{n,0,15}]

A362562 Number of non-constant integer partitions of n having a unique mode equal to the mean.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 52, 12, 14, 33, 54, 0, 121, 0, 98, 76, 31, 100, 343, 0, 45, 164, 493, 0, 548, 0, 483, 757, 88, 0, 1789, 289, 979, 645, 1290, 0, 2225, 1677, 3371, 1200, 221, 0, 10649
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(8) = 1 through a(16) = 7 partitions:
  (3221)  .  (32221)  .  (4332)    .  (3222221)  (43332)  (5443)
                         (5331)       (3322211)  (53331)  (6442)
                         (322221)     (4222211)  (63321)  (7441)
                         (422211)                         (32222221)
                                                          (33222211)
                                                          (42222211)
                                                          (52222111)
		

Crossrefs

Partitions containing their mean are counted by A237984, ranks A327473.
Partitions missing their mean are counted by A327472, ranks A327476.
Allowing constant partitions gives A363723.
Including median also gives A363728, ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}==modes[#]&]],{n,0,30}]

A362618 Numbers whose prime factorization has either (1) odd length, or (2) equal middle parts.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is a prime factor of n.

Examples

			The prime factorization of 90 is 2*3*3*5, with middle parts (3,3), so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238478.
The complement (without 1) is A362617, counted by A238479.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362611 ranks modes in prime factorization, counted by A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],MemberQ[prifacs[#],Median[prifacs[#]]]&]

A360681 Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.

Original entry on oeis.org

1, 2, 6, 30, 42, 49, 60, 66, 70, 78, 84, 90, 102, 105, 114, 120, 126, 132, 138, 140, 150, 154, 156, 168, 174, 186, 198, 204, 210, 222, 228, 234, 246, 258, 264, 270, 276, 280, 282, 286, 294, 306, 308, 312, 315, 318, 330, 342, 348, 350, 354, 366, 372, 378, 385
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
   30: {1,2,3}
   42: {1,2,4}
   49: {4,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with median 1. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with median 1/2. So 2760 is not in the sequence.
		

Crossrefs

For distinct prime indices instead of 0-prepended differences: A360453.
For mean instead of median we have A360680.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
Multisets with integer median:
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[Length/@Split[prix[#]]] == Median[Differences[Prepend[prix[#],0]]]&]

A361861 Number of integer partitions of n where the median is twice the minimum.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 5, 5, 8, 11, 16, 20, 28, 38, 53, 67, 87, 111, 146, 183, 236, 297, 379, 471, 591, 729, 909, 1116, 1376, 1682, 2065, 2507, 3055, 3699, 4482, 5395, 6501, 7790, 9345, 11153, 13316, 15839, 18844, 22333, 26466, 31266, 36924, 43478, 51177
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(11) = 11 partitions:
  (31)  (221)  (321)  (421)   (62)     (621)    (442)     (542)
                      (2221)  (521)    (4221)   (721)     (821)
                              (3221)   (4311)   (5221)    (6221)
                              (3311)   (22221)  (5311)    (6311)
                              (22211)  (32211)  (32221)   (33221)
                                                (33211)   (42221)
                                                (42211)   (43211)
                                                (222211)  (52211)
                                                          (222221)
                                                          (322211)
                                                          (2222111)
The partition (3,2,2,2,1,1) has median 2 and minimum 1, so is counted under a(11).
The partition (5,4,2) has median 4 and minimum 2, so is counted under a(11).
		

Crossrefs

For maximum instead of median we have A118096.
For length instead of median we have A237757, without the coefficient A006141.
With minimum instead of twice minimum we have A361860.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Min@@#==Median[#]&]],{n,30}]

A362049 Number of integer partitions of n such that (length) = 2*(median).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). All of these partitions have even length, because an odd-length multiset cannot have fractional median.

Examples

			The a(13) = 3 through a(15) = 5 partitions:
  (7,2,2,2)  (8,2,2,2)      (9,2,2,2)
  (8,2,2,1)  (9,2,2,1)      (10,2,2,1)
  (8,3,1,1)  (9,3,1,1)      (10,3,1,1)
             (3,3,3,3,1,1)  (3,3,3,3,2,1)
                            (4,3,3,3,1,1)
		

Crossrefs

For maximum instead of median we have A237753.
For minimum instead of median we have A237757.
For maximum instead of length we have A361849, ranks A361856.
This is the equal case of A362048.
These partitions have ranks A362050.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2*Median[#]&]],{n,30}]
Previous Showing 81-90 of 107 results. Next