cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A326537 MM-numbers of multiset partitions where each part has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&]

A383095 Number of integer partitions of n having exactly one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 6, 2, 4, 5, 6, 2, 12, 2, 6, 8, 5, 2, 20, 2, 12, 8, 6, 2, 20, 5, 6, 12, 12, 2, 34, 2, 6, 8, 6, 8, 45, 2, 6, 8, 20, 2, 34, 2, 12, 28, 6, 2, 30, 5, 20, 8, 12, 2, 52, 8, 20, 8, 6, 2, 78, 2, 6, 28, 7, 8, 34, 2, 12, 8, 34, 2, 80, 2, 6, 28, 12, 8, 34, 2, 30, 25
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2025

Keywords

Examples

			The partition (2,2,1,1) has permutation (2,1,1,2) so is counted under a(6).
The a(1) = 1 through a(10) = 6 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      33111      22222
                           2211             11111111  3111111    2221111
                           21111                      111111111  22111111
                           111111                                1111111111
		

Crossrefs

For distinct instead of equal run-sums we have A000005.
For run-lengths instead of sums we have A383094.
The complement is counted by A383096 + A383097, ranks A383100 \/ A383015.
These partitions are ranked by A383099 = positions of 1 in A382877.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A383098 counts partitions with a permutation having all equal run-sums, ranks A383110.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Total/@Split[#]&]]==1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383098 Number of integer partitions of n having at least one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 7, 5, 7, 2, 19, 2, 7, 8, 14, 2, 27, 2, 24, 8, 7, 2, 58, 5, 7, 13, 30, 2, 72, 2, 38, 8, 7, 8, 135, 2, 7, 8, 91, 2, 112, 2, 45, 38, 7, 2, 258, 5, 51, 8, 54, 2, 208, 8, 143, 8, 7, 2, 525, 2, 7, 44, 153, 8, 256, 2, 75, 8, 136, 2, 891, 2, 7, 57, 87, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The partition (4,4,4,2,2,1,1,1,1) has permutations (4,2,2,4,1,1,1,1,4) and (4,1,1,1,1,4,2,2,4) so is counted under a(20).
The a(1) = 1 through a(10) = 7 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              211          222              422       33111      22222
              1111         2211             2222      3111111    511111
                           3111             41111     111111111  2221111
                           21111            221111               22111111
                           111111           11111111             1111111111
		

Crossrefs

For distinct instead of equal run-sums we appear to have A382427.
For run-lengths instead of sums we have A383013, ranked by complement of A382879.
The case of a unique choice is A383095, ranks A383099 = positions of 1 in A382877.
The complement is counted by A383096, ranks A383100 = positions of 0 in A382877.
These partitions are ranked by A383110.
The case of more than one choice is A383097, ranks A383015.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Total/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A383097(n) + A383095(n), ranks A383015 \/ A383099.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383096 Number of integer partitions of n having no permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 15, 25, 35, 54, 58, 99, 128, 168, 217, 295, 358, 488, 603, 784, 995, 1253, 1517, 1953, 2429, 2997, 3688, 4563, 5532, 6840, 8311, 10135, 12303, 14875, 17842, 21635, 26008, 31177, 37247, 44581, 53062, 63259, 75130, 89096, 105551, 124752, 147015, 173520
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(3) = 1 through a(8) = 15 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (22211)
                             (211111)  (32111)
                                       (311111)
                                       (2111111)
		

Crossrefs

For distinct instead of equal run-sums we appear to have A381717, q.v.
For run-lengths instead of sums we have A382915, ranks A382879, by signature A382914.
For more than one permutation we have A383097, ranks A383015.
The complement is counted by A383098, ranks A383110
These partitions are ranked by A383100, positions of 0 in A382877.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.
A383095 counts partitions having a unique permutation with equal run-sums, ranks A383099.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]==0&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A336137 Number of set partitions of the binary indices of n with equal block-sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(n) set partitions for n = 7, 59, 119, 367, 127:
  {123}    {12456}      {123567}      {1234679}    {1234567}
  {12}{3}  {126}{45}    {1236}{57}    {12346}{79}  {1247}{356}
           {15}{24}{6}  {156}{237}    {1249}{367}  {1256}{347}
                        {17}{26}{35}  {1267}{349}  {1346}{257}
                                      {169}{2347}  {167}{2345}
                                                   {16}{25}{34}{7}
The binary indices of 382 are {2,3,4,5,6,7,9}, with equal block-sum set partitions:
  {{2,7},{3,6},{4,5},{9}}
  {{2,4,6},{3,9},{5,7}}
  {{2,7,9},{3,4,5,6}}
  {{2,3,4,9},{5,6,7}}
  {{2,3,6,7},{4,5,9}}
  {{2,4,5,7},{3,6,9}}
  {{2,3,4,5,6,7,9}}
so a(382) = 7.
		

Crossrefs

These set partitions are counted by A035470.
The version for twice-partitions is A279787.
The version for partitions of partitions is A305551.
The version for factorizations is A321455.
The version for normal multiset partitions is A326518.
The version for distinct block-sums is A336138.
Set partitions of binary indices are A050315.
Normal multiset partitions with equal lengths are A317583.
Normal multiset partitions with equal averages are A326520.
Multiset partitions with equal block-sums are ranked by A326534.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[bpe[n]],SameQ@@Total/@#&]],{n,0,100}]

A326536 MM-numbers of multiset partitions where every part has the same average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 145, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A322902 in having 145.
These are numbers where each prime index has the same average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&]

A381719 Numbers whose prime indices cannot be partitioned into sets with a common sum.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

Differs from A059404, A323055, A376250 in lacking 150.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be factored into squarefree numbers with a common sum of prime indices (A056239).

Examples

			The prime indices of 150 are {1,2,3,3}, and {{3},{3},{1,2}} is a partition into sets with a common sum, so 150 is not in the sequence.
		

Crossrefs

Twice-partitions of this type (sets with a common sum) are counted by A279788.
These multiset partitions (sets with a common sum) are ranked by A326534 /\ A302478.
For distinct block-sums we have A381806, counted by A381990 (complement A381992).
For constant blocks we have A381871 (zeros of A381995), counted by A381993.
Partitions of this type are counted by A381994.
These are the zeros of A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
The complement counted by A383308.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A381633 counts set systems with distinct sums, see A381634, A293243.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Select[Range[100],Select[mps[prix[#]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]=={}&]

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A326565 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 91, 1318, 73581, 51913025
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(2) = 1 through a(5) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}      {{1,2,3,4,5}}
                      {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                      {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                      {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                       {{1,4,5},{1,2,3,4}}
                                       {{2,3,5},{1,2,3,4}}
                                       {{2,4,5},{1,2,3,5}}
                                       {{3,4,5},{1,2,4,5}}
                                       {{1,5},{2,4},{1,2,3}}
                                       {{2,5},{3,4},{1,2,4}}
                                       {{3,5},{1,2,5},{1,3,4}}
                                       {{4,5},{1,3,5},{2,3,4}}
                                       {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019
Previous Showing 11-20 of 40 results. Next