cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 120 results. Next

A326623 Heinz numbers of integer partitions whose geometric mean is an integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 42, 43, 46, 47, 49, 53, 57, 59, 61, 64, 67, 71, 73, 76, 79, 81, 83, 89, 97, 101, 103, 106, 107, 109, 113, 121, 125, 126, 127, 128, 131, 137, 139, 149, 151, 157, 161, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   14: {1,4}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

The enumeration of these partitions by sum is given by A067539.
Heinz numbers of partitions with integer average are A316413.
The case without prime powers is A326624.
Subsets whose geometric mean is an integer are A326027.
Factorizations with integer geometric mean are A326028.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[GeometricMean[primeMS[#]]]&]

A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in lacking 180, with prime indices {1,1,2,2,3}.
First differs from A360246 in lacking 126 and having 1950.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is not in the sequence.
The prime indices of 1950 are {1,2,3,3,6} with median 3 and distinct prime indices {1,2,3,6} with median 5/2, so 1950 is in the sequence.
		

Crossrefs

These partitions are counted by A360244.
The complement is A360249, counted by A360245.
For multiplicities instead of parts: complement of A360453.
For multiplicities instead of distinct parts: complement of A360454.
For mean instead of median we have A360246, counted by A360242.
The complement for mean instead of median is A360247, counted by A360243.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]!=Median[Union[prix[#]]]&]

A363487 High mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 2, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 3, 7, 1, 16, 2, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 3, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is its greatest mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360015, counted by A241131.
For low instead of high mode we have A363486.
The version for low median is A363941, triangle A124943.
The version for high median is A363942, triangle A124944.
The version for mean instead of mode is A363944, low A363943.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,Last[modes[prix[n]]]],{n,30}]

A363724 Number of integer partitions of n whose mean is a mode, i.e., partitions whose mean appears at least as many times as each of the other parts.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 2, 15, 2, 8, 15, 17, 2, 30, 2, 43, 30, 15, 2, 112, 36, 21, 60, 119, 2, 251, 2, 201, 126, 41, 271, 655, 2, 57, 250, 1060, 2, 1099, 2, 844, 1508, 107, 2, 3484, 802, 2068, 900, 2136, 2, 4558, 3513, 7071, 1630, 259, 2, 20260
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = 6, 10, 12:
  (6)            (10)                   (12)
  (3,3)          (5,5)                  (6,6)
  (2,2,2)        (2,2,2,2,2)            (4,4,4)
  (3,2,1)        (3,2,2,2,1)            (5,4,3)
  (1,1,1,1,1,1)  (4,2,2,1,1)            (6,4,2)
                 (1,1,1,1,1,1,1,1,1,1)  (7,4,1)
                                        (3,3,3,3)
                                        (4,3,3,2)
                                        (5,3,3,1)
                                        (6,3,2,1)
                                        (2,2,2,2,2,2)
                                        (3,2,2,2,2,1)
                                        (3,3,2,2,1,1)
                                        (4,2,2,2,1,1)
                                        (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

For parts instead of modes we have A237984, complement A327472.
The case of a unique mode is A363723, non-constant A362562.
The case of more than one mode is A363731.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A362608 counts partitions with a unique mode.
A363719 = all three averages equal, ranks A363727, non-constant A363728.
A363720 = all three averages different, ranks A363730, unique mode A363725.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&]],{n,30}]

A363943 Mean of the multiset of prime indices of n, rounded down.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 2, 2, 1, 7, 1, 8, 1, 3, 3, 9, 1, 3, 3, 2, 2, 10, 2, 11, 1, 3, 4, 3, 1, 12, 4, 4, 1, 13, 2, 14, 2, 2, 5, 15, 1, 4, 2, 4, 2, 16, 1, 4, 1, 5, 5, 17, 1, 18, 6, 2, 1, 4, 2, 19, 3, 5, 2, 20, 1, 21, 6, 2, 3, 4, 3, 22, 1, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Extending the terminology introduced at A124943, this is the "low mean" of prime indices.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with mean 3/2, so a(360) = 1.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Before rounding down we had A326567/A326568.
For mode instead of mean we have A363486, high A363487.
For low median instead of mean we have A363941, triangle A124943.
For high median instead of mean we have A363942, triangle A124944.
The high version is A363944, triangle A363946.
The triangle for this statistic (low mean) is A363945.
Positions of 1's are A363949(n) = 2*A344296(n), counted by A025065.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363947 ranks partitions with rounded mean 1, counted by A363948.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    meandown[y_]:=If[Length[y]==0,0,Floor[Mean[y]]];
    Table[meandown[prix[n]],{n,100}]

A326625 Number of strict integer partitions of n whose geometric mean is an integer.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 2, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 5, 2, 3, 3, 3, 5, 1, 3, 5, 5, 3, 4, 4, 7, 7, 5, 5, 2, 4, 2, 5, 7, 4, 6, 9, 5, 7, 7, 8, 7, 5, 11, 5, 9, 9, 9, 7, 9, 5, 13, 7, 9, 7, 11, 12, 7, 7, 12, 9, 13, 11, 10, 13, 7, 14
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Examples

			The a(63) = 9 partitions:
  (63)  (36,18,9)  (54,4,3,2)   (36,18,6,2,1)   (36,9,8,6,3,1)
        (48,12,3)  (27,24,8,4)  (18,16,12,9,8)
                   (32,18,9,4)
The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   5: (5)
   5: (4,1)
   6: (6)
   7: (7)
   7: (4,2,1)
   8: (8)
   9: (9)
  10: (10)
  10: (9,1)
  10: (8,2)
  11: (11)
  12: (12)
  13: (13)
  13: (9,4)
  13: (9,3,1)
  14: (14)
  14: (8,4,2)
  15: (15)
  15: (12,3)
  16: (16)
		

Crossrefs

Partitions whose geometric mean is an integer are A067539.
Strict partitions whose average is an integer are A102627.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]

A359897 Number of strict integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 10, 7, 10, 13, 11, 9, 20, 10, 20, 18, 21, 12, 30, 24, 28, 27, 30, 15, 73, 16, 37, 43, 45, 67, 74, 19, 55, 71, 126, 21, 150, 22, 75, 225, 78, 24, 183, 126, 245, 192, 132, 27, 284, 244, 403, 303, 120, 30, 828
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

The non-strict version is A240219, complement A359894, ranked by A359889.
The complement is counted by A359898.
The odd-length case is A359899, complement A359900.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A237984 counts partitions containing their mean, complement A327472.
A240850 counts strict partitions containing their mean, complement A240851.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Mean[#]==Median[#]&]],{n,0,30}]

A363944 Mean of the multiset of prime indices of n, rounded up.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 2, 6, 3, 3, 1, 7, 2, 8, 2, 3, 3, 9, 2, 3, 4, 2, 2, 10, 2, 11, 1, 4, 4, 4, 2, 12, 5, 4, 2, 13, 3, 14, 3, 3, 5, 15, 2, 4, 3, 5, 3, 16, 2, 4, 2, 5, 6, 17, 2, 18, 6, 3, 1, 5, 3, 19, 3, 6, 3, 20, 2, 21, 7, 3, 4, 5, 3, 22, 2, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Extending the terminology introduced at A124944, this is the "high mean" of prime indices.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with mean 3/2, so a(360) = 2.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A000079(n>0).
Before rounding up we had A326567/A326568.
For mode instead of mean we have A363487, low A363486.
For median instead of mean we have A363942, triangle A124944.
Rounding down instead of up gives A363943, triangle A363945.
The triangle for this statistic (high mean) is A363946.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363947 ranks partitions with rounded mean 1, counted by A363948.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[meanup[prix[n]],{n,100}]

A360555 Two times the median of the first differences of the 0-prepended prime indices of n > 1.

Original entry on oeis.org

2, 4, 1, 6, 2, 8, 0, 2, 3, 10, 2, 12, 4, 3, 0, 14, 2, 16, 2, 4, 5, 18, 1, 3, 6, 0, 2, 20, 2, 22, 0, 5, 7, 4, 1, 24, 8, 6, 1, 26, 2, 28, 2, 2, 9, 30, 0, 4, 2, 7, 2, 32, 1, 5, 1, 8, 10, 34, 2, 36, 11, 4, 0, 6, 2, 38, 2, 9, 2, 40, 0, 42, 12, 2, 2, 5, 2, 44, 0, 0
Offset: 2

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so a(1617) = 3.
		

Crossrefs

The version for divisors is A063655.
Differences of 0-prepended prime indices are listed by A287352.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360556
Positions of odd terms are A360557
Positions of 0's are A360558, counted by A360254.
For mean instead of two times median we have A360614/A360615.
A112798 lists prime indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[Differences[Prepend[prix[n],0]]],{n,2,100}]

A360009 Numbers whose prime indices have integer mean and integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110, 111
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
		

Crossrefs

For just integer mean we have A316413 (counted by A067538).
The mean of prime indices is given by A326567/A326568.
The complement is A348551 \/ A359912 (counted by A349156 and A307683).
These partitions are counted by A359906.
For just integer median we have A359908 (counted by A325347).
The median of prime indices is given by A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[prix[#]]]&&IntegerQ[Median[prix[#]]]&]

Formula

Intersection of A316413 and A359908.
Previous Showing 31-40 of 120 results. Next