cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A368186 Number of n-covers of an unlabeled n-set.

Original entry on oeis.org

1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2023

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems:
  {{1}}  {{1},{2}}    {{1},{2},{3}}
         {{1},{1,2}}  {{1},{2},{1,3}}
                      {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{2},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1,2},{1,3},{2,3}}
                      {{1},{2,3},{1,2,3}}
                      {{1,2},{1,3},{1,2,3}}
		

Crossrefs

The labeled version is A054780, ranks A367917, non-covering A367916.
The case of graphs is A006649, labeled A367863, cf. A116508, A367862.
The case of connected graphs is A001429, labeled A057500.
Covers with any number of edges are counted by A003465, unlabeled A055621.
A046165 counts minimal covers, ranks A309326.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.

Programs

  • Mathematica
    brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}];
    Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1}
    G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)}
    a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024

Formula

a(n) = A055130(n, n) for n > 0. - Andrew Howroyd, Jan 03 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 03 2024

A326950 Number of T_0 antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 2, 4, 12, 107, 6439, 7726965, 2414519001532, 56130437161079183223017, 286386577668298409107773412840148848120595
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(3) = 12 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1},{2}}  {{3}}
                        {{1},{2}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1,2},{1,3}}
                        {{1,2},{2,3}}
                        {{1},{2},{3}}
                        {{1,3},{2,3}}
                        {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains of nonempty sets are A014466.
T_0 set-systems are A326940.
The covering case is A245567.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Binomial transform of A245567, if we assume A245567(0) = 1.

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 14 2019
a(9), based on A245567, from Patrick De Causmaecker, Jun 01 2023

A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems whose dual is strict and pairwise intersecting.

Examples

			The a(1) = 1 through a(2) = 3 set-systems:
  {}  {{1}}  {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
The a(3) = 62 set-systems:
  1 2 123    1 2 3 123    1 2 12 13 23   1 2 3 12 13 23   1 2 3 12 13 23 123
  1 3 123    1 12 13 23   1 2 3 12 123   1 2 3 12 13 123
  2 3 123    1 2 12 123   1 2 3 13 123   1 2 3 12 23 123
  1 12 123   1 2 13 123   1 2 3 23 123   1 2 3 13 23 123
  1 13 123   1 2 23 123   1 3 12 13 23   1 2 12 13 23 123
  12 13 23   1 3 12 123   2 3 12 13 23   1 3 12 13 23 123
  2 12 123   1 3 13 123   1 2 12 13 123  2 3 12 13 23 123
  2 23 123   1 3 23 123   1 2 12 23 123
  3 13 123   2 12 13 23   1 2 13 23 123
  3 23 123   2 3 12 123   1 3 12 13 123
  12 13 123  2 3 13 123   1 3 12 23 123
  12 23 123  2 3 23 123   1 3 13 23 123
  13 23 123  3 12 13 23   2 3 12 13 123
             1 12 13 123  2 3 12 23 123
             1 12 23 123  2 3 13 23 123
             1 13 23 123  1 12 13 23 123
             2 12 13 123  2 12 13 23 123
             2 12 23 123  3 12 13 23 123
             2 13 23 123
             3 12 13 123
             3 12 23 123
             3 13 23 123
             12 13 23 123
		

Crossrefs

The pairwise intersecting case is A319774.
The BII-numbers of these set-systems are the intersection of A326947 and A326853.
The non-T_0 version is A327040.
The non-covering version is A327052.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Inverse binomial transform of A327052.

Extensions

a(5)-a(7) from Christian Sievers, Feb 04 2024

A326854 BII-numbers of T_0 (costrict), pairwise intersecting set-systems where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

0, 1, 2, 5, 6, 8, 17, 24, 34, 40, 52, 69, 70, 81, 84, 85, 88, 98, 100, 102, 104, 112, 116, 120, 128, 257, 384, 514, 640, 772, 1029, 1030, 1281, 1284, 1285, 1408, 1538, 1540, 1542, 1664, 1792, 1796, 1920, 2056, 2176, 2320, 2592, 2880, 3120, 3152, 3168, 3184
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence gives all BII-numbers (defined below) of pairwise intersecting set-systems whose dual is strict and pairwise intersecting.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

Examples

			The sequence of all set-systems that are pairwise intersecting, cointersecting, and costrict, together with their BII-numbers, begins:
    0: {}
    1: {{1}}
    2: {{2}}
    5: {{1},{1,2}}
    6: {{2},{1,2}}
    8: {{3}}
   17: {{1},{1,3}}
   24: {{3},{1,3}}
   34: {{2},{2,3}}
   40: {{3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   69: {{1},{1,2},{1,2,3}}
   70: {{2},{1,2},{1,2,3}}
   81: {{1},{1,3},{1,2,3}}
   84: {{1,2},{1,3},{1,2,3}}
   85: {{1},{1,2},{1,3},{1,2,3}}
   88: {{3},{1,3},{1,2,3}}
   98: {{2},{2,3},{1,2,3}}
  100: {{1,2},{2,3},{1,2,3}}
  102: {{2},{1,2},{2,3},{1,2,3}}
		

Crossrefs

Equals the intersection of A326947, A326910, and A326853.
These set-systems are counted by A319774 (covering).
The non-T_0 version is A327061.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,10000],UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]

A326959 Number of T_0 set-systems covering a subset of {1..n} that are closed under intersection.

Original entry on oeis.org

1, 2, 5, 22, 297, 20536, 16232437, 1063231148918, 225402337742595309857
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(3) = 22 set-systems:
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{2}}        {{2}}
             {{1},{1,2}}  {{3}}
             {{2},{1,2}}  {{1},{1,2}}
                          {{1},{1,3}}
                          {{2},{1,2}}
                          {{2},{2,3}}
                          {{3},{1,3}}
                          {{3},{2,3}}
                          {{1},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The covering case is A309615.
T_0 set-systems are A326940.
The version with empty edges allowed is A326945.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Binomial transform of A309615.

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 14 2019

A368731 Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0

Views

Author

Gus Wiseman, Jan 07 2024

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 10 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

The case of graphs is A001434, labeled A116508.
Labeled version is A136556, covering A054780, binomial transform of A367916.
The case of labeled covering graphs is A367863, binomial transform A367862.
These include the set-systems ranked by A367917.
The covering case is A368186, for graphs A006649, connected A057500.
Requiring all edges to be singletons or pairs gives A368598.
A003465 counts covers with any number of edges, unlabeled A055621.
A046165 counts minimal covers, ranks A309326.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
  • PARI
    a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 11 2024

A326948 Number of connected T_0 set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(3) = 86 set-systems:
  {12}{13}         {1}{2}{13}{123}     {1}{2}{3}{13}{23}
  {12}{23}         {1}{2}{23}{123}     {1}{2}{3}{13}{123}
  {13}{23}         {1}{3}{12}{13}      {1}{2}{3}{23}{123}
  {1}{2}{123}      {1}{3}{12}{23}      {1}{2}{12}{13}{23}
  {1}{3}{123}      {1}{3}{12}{123}     {1}{2}{12}{13}{123}
  {1}{12}{13}      {1}{3}{13}{23}      {1}{2}{12}{23}{123}
  {1}{12}{23}      {1}{3}{13}{123}     {1}{2}{13}{23}{123}
  {1}{12}{123}     {1}{3}{23}{123}     {1}{3}{12}{13}{23}
  {1}{13}{23}      {1}{12}{13}{23}     {1}{3}{12}{13}{123}
  {1}{13}{123}     {1}{12}{13}{123}    {1}{3}{12}{23}{123}
  {2}{3}{123}      {1}{12}{23}{123}    {1}{3}{13}{23}{123}
  {2}{12}{13}      {1}{13}{23}{123}    {1}{12}{13}{23}{123}
  {2}{12}{23}      {2}{3}{12}{13}      {2}{3}{12}{13}{23}
  {2}{12}{123}     {2}{3}{12}{23}      {2}{3}{12}{13}{123}
  {2}{13}{23}      {2}{3}{12}{123}     {2}{3}{12}{23}{123}
  {2}{23}{123}     {2}{3}{13}{23}      {2}{3}{13}{23}{123}
  {3}{12}{13}      {2}{3}{13}{123}     {2}{12}{13}{23}{123}
  {3}{12}{23}      {2}{3}{23}{123}     {3}{12}{13}{23}{123}
  {3}{13}{23}      {2}{12}{13}{23}     {1}{2}{3}{12}{13}{23}
  {3}{13}{123}     {2}{12}{13}{123}    {1}{2}{3}{12}{13}{123}
  {3}{23}{123}     {2}{12}{23}{123}    {1}{2}{3}{12}{23}{123}
  {12}{13}{23}     {2}{13}{23}{123}    {1}{2}{3}{13}{23}{123}
  {12}{13}{123}    {3}{12}{13}{23}     {1}{2}{12}{13}{23}{123}
  {12}{23}{123}    {3}{12}{13}{123}    {1}{3}{12}{13}{23}{123}
  {13}{23}{123}    {3}{12}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{2}{3}{123}   {3}{13}{23}{123}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{12}{13}   {12}{13}{23}{123}
  {1}{2}{12}{23}   {1}{2}{3}{12}{13}
  {1}{2}{12}{123}  {1}{2}{3}{12}{23}
  {1}{2}{13}{23}   {1}{2}{3}{12}{123}
		

Crossrefs

The same with covering instead of connected is A059201, with unlabeled version A319637.
The non-T_0 version is A323818 (covering) or A326951 (not-covering).
The non-connected version is A326940, with unlabeled version A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Logarithmic transform of A059201.

A327016 BII-numbers of finite T_0 topologies without their empty set.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1

Views

Author

Gus Wiseman, Aug 14 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  81: {{1},{1,3},{1,2,3}}
  85: {{1},{1,2},{1,3},{1,2,3}}
  87: {{1},{2},{1,2},{1,3},{1,2,3}}
  88: {{3},{1,3},{1,2,3}}
		

Crossrefs

T_0 topologies are A001035, with unlabeled version A000112.
BII-numbers of topologies without their empty set are A326876.
BII-numbers of T_0 set-systems are A326947.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
Previous Showing 21-28 of 28 results.