A327052
Number of T_0 (costrict) set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 2, 6, 75, 24981, 2077072342, 9221293211115589902, 170141182628636920748880864929055912851
Offset: 0
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The unlabeled multiset partition version is
A319760.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A327053
Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0
The a(1) = 1 through a(2) = 3 set-systems:
{} {{1}} {{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The a(3) = 62 set-systems:
1 2 123 1 2 3 123 1 2 12 13 23 1 2 3 12 13 23 1 2 3 12 13 23 123
1 3 123 1 12 13 23 1 2 3 12 123 1 2 3 12 13 123
2 3 123 1 2 12 123 1 2 3 13 123 1 2 3 12 23 123
1 12 123 1 2 13 123 1 2 3 23 123 1 2 3 13 23 123
1 13 123 1 2 23 123 1 3 12 13 23 1 2 12 13 23 123
12 13 23 1 3 12 123 2 3 12 13 23 1 3 12 13 23 123
2 12 123 1 3 13 123 1 2 12 13 123 2 3 12 13 23 123
2 23 123 1 3 23 123 1 2 12 23 123
3 13 123 2 12 13 23 1 2 13 23 123
3 23 123 2 3 12 123 1 3 12 13 123
12 13 123 2 3 13 123 1 3 12 23 123
12 23 123 2 3 23 123 1 3 13 23 123
13 23 123 3 12 13 23 2 3 12 13 123
1 12 13 123 2 3 12 23 123
1 12 23 123 2 3 13 23 123
1 13 23 123 1 12 13 23 123
2 12 13 123 2 12 13 23 123
2 12 23 123 3 12 13 23 123
2 13 23 123
3 12 13 123
3 12 23 123
3 13 23 123
12 13 23 123
The pairwise intersecting case is
A319774.
The BII-numbers of these set-systems are the intersection of
A326947 and
A326853.
The non-covering version is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A327100
BII-numbers of antichains of sets with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1
The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
128: {{4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
516: {{1,2},{2,4}}
532: {{1,2},{1,3},{2,4}}
544: {{2,3},{2,4}}
548: {{1,2},{2,3},{2,4}}
560: {{1,3},{2,3},{2,4}}
564: {{1,2},{1,3},{2,3},{2,4}}
BII numbers of antichains with vertex-connectivity >= 1 are
A326750.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
Cf.
A000120,
A000372,
A006126,
A048143,
A048793,
A070939,
A322390,
A326031,
A326749,
A326751,
A327071,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]
A327060
Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 4, 9, 11, 30, 42, 103, 194, 443
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions:
{} {{1}} {{11}} {{111}} {{1111}} {{11111}}
{{12}} {{122}} {{1122}} {{11222}}
{{1}{1}} {{123}} {{1222}} {{12222}}
{{1}{1}{1}} {{1233}} {{12233}}
{{1234}} {{12333}}
{{11}{11}} {{12344}}
{{12}{12}} {{12345}}
{{12}{22}} {{11}{122}}
{{1}{1}{1}{1}} {{12}{222}}
{{33}{123}}
{{1}{1}{1}{1}{1}}
The BII-numbers of these set-systems are the intersection of
A326853 and
A326704.
Cointersecting set-systems are
A327039.
A327128
Number of set-systems with n vertices whose edge-set has cut-connectivity 1.
Original entry on oeis.org
0, 1, 2, 27, 2084
Offset: 0
The BII-numbers of these set-systems are
A327098.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327113,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]
A327061
BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
The unlabeled multiset partition version is
A319765.
These set-systems are counted by
A327037 (covering) and
A327038 (not covering).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments