cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A327200 Number of labeled graphs with n vertices and non-spanning edge-connectivity >= 2.

Original entry on oeis.org

0, 0, 0, 4, 42, 718, 26262, 1878422, 256204460, 67525498676, 34969833809892, 35954978661632864, 73737437034063350534, 302166248212488958298674, 2475711390267267917290354410, 40563960064630744031043287569378, 1329219366981359393514586291328267704
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Crossrefs

Row sums of A327148 if the first two columns are removed.
BII-numbers of set-systems with non-spanning edge-connectivity >= 2 are A327102.
Graphs with non-spanning edge-connectivity 1 are A327231.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],eConn[#]>=2&]],{n,0,5}]

Formula

Binomial transform of A322395, if we assume A322395(0) = A322395(1) = A322395(2) = 0.

A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    1    1
    2    3
    8    7    3    1
   53   27   45   36    6
  747  511 1497 2085 1540  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {}             {{1}}      {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{1},{2}}      {{2}}      {{1,2},{2,3}}
  {{1},{3}}      {{3}}      {{1,3},{2,3}}
  {{2},{3}}      {{1,2}}
  {{1},{2,3}}    {{1,3}}
  {{2},{1,3}}    {{2,3}}
  {{3},{1,2}}    {{1,2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327354.
The covering case is A327357.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327148, with covering case A327149, unlabeled version A327236, and unlabeled covering case A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327354 Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 2, 8, 53, 747, 45156, 54804920, 19317457655317
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			The a(1) = 1 through a(3) = 8 antichains:
  {}  {}         {}
      {{1},{2}}  {{1},{2}}
                 {{1},{3}}
                 {{2},{3}}
                 {{1},{2,3}}
                 {{2},{1,3}}
                 {{3},{1,2}}
                 {{1},{2},{3}}
		

Crossrefs

Column k = 0 of A327353.
The covering case is A120338.
The unlabeled version is A327426.
The spanning edge-connectivity version is A327352.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]

Formula

Equals the binomial transform of the exponential transform of A048143 minus A048143.

A327199 Number of labeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Also graphs with non-spanning edge-connectivity 0.

Examples

			The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
		

Crossrefs

Column k = 0 of A327148.
The covering case is A327070.
The unlabeled version is A327235.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]

Formula

Binomial transform of A327070.

A327357 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    0    1
    1    1
    4    1    3    1
   30   13   33   32    6
  546  421 1302 1915 1510  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {{1},{2,3}}    {{1,2,3}}  {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{2},{1,3}}               {{1,2},{2,3}}
  {{3},{1,2}}               {{1,3},{2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A307249.
Column k = 0 is A120338.
The non-covering version is A327353.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327149, with unlabeled version A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}

A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 6, 46, 655, 17991, 927416, 89009740, 16020407709, 5468601546685, 3578414666656214, 4529751815161579194, 11175105490563109463875, 54043272967471942825421219, 514566625051705610110588073460, 9677104749727084630538798805505880
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			The a(4) = 46 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}
  {13}  {12,14}  {12,13,24}  {12,13,14,24}
  {14}  {12,23}  {12,13,34}  {12,13,14,34}
  {23}  {12,24}  {12,14,23}  {12,13,23,24}
  {24}  {13,14}  {12,14,34}  {12,13,23,34}
  {34}  {13,23}  {12,23,24}  {12,14,23,24}
        {13,34}  {12,23,34}  {12,14,24,34}
        {14,24}  {12,24,34}  {12,23,24,34}
        {14,34}  {13,14,23}  {13,14,23,34}
        {23,24}  {13,14,24}  {13,14,24,34}
        {23,34}  {13,23,24}  {13,23,24,34}
        {24,34}  {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
		

Crossrefs

The covering case is A327362.
Graphs with endpoints are A245797.
Graphs with connected edge-set are A287689.
Connected graphs with bridges are A327071.
Covering graphs with endpoints are A327227.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Binomial transform of A327362.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327196 Number of connected set-systems with n vertices and at least one bridge that is not an endpoint (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 1, 4, 44, 2960
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Non-isomorphic representatives of the a(3) = 44 set-systems:
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1},{2},{1,2}}
  {{1},{1,2},{2,3}}
  {{1},{2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
		

Crossrefs

The covering version is A327129.
The BII-numbers of these set-systems are A327099.
The restriction to simple graphs is A327231.
Set-systems with spanning edge-connectivity 1 are A327145.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],eConn[#]==1&]],{n,0,3}]

Formula

Binomial transform of A327129.
Previous Showing 11-17 of 17 results.