cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A362620 Numbers whose greatest prime factor is not a mode, meaning it appears fewer times than some other.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212
Offset: 1

Views

Author

Gus Wiseman, May 11 2023

Keywords

Comments

First differs from A112769 in lacking 300.

Examples

			The prime factorization of 90 is 2*3*3*5, with modes {3} and maximum 5, so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A240302.
The complement is A362619, counted by A171979.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362605 ranks partitions with a more than one mode, counted by A362607.
A362606 ranks partitions with a more than one co-mode, counted by A362609.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
A362621 ranks partitions with median equal to maximum, counted by A053263.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a,b) -> a[1]Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[Commonest[prifacs[#]],Max[prifacs[#]]]&]

A364062 Number of integer partitions of n with unique co-mode 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 6, 2, 8, 6, 9, 6, 16, 7, 21, 12, 23, 18, 39, 17, 47, 32, 59, 40, 86, 44, 110, 72, 131, 95, 188, 103, 233, 166, 288, 201, 389, 244, 490, 347, 587, 440, 794, 524, 974, 727, 1187, 903, 1547, 1106, 1908, 1459, 2303, 1826, 2979, 2198
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

These are partitions with at least one 1 but with fewer 1's than each of the other parts.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(n) partitions for n = 5, 7, 11, 13, 15:
  (221)    (331)      (551)          (661)            (771)
  (11111)  (2221)     (33221)        (4441)           (44331)
           (1111111)  (33311)        (33331)          (55221)
                      (222221)       (44221)          (442221)
                      (2222111)      (332221)         (3322221)
                      (11111111111)  (2222221)        (3333111)
                                     (22222111)       (22222221)
                                     (1111111111111)  (222222111)
                                                      (111111111111111)
		

Crossrefs

For high (or unique) mode we have A241131, ranks A360013.
For low mode we have A241131, ranks A360015.
Allowing any unique co-mode gives A362610, ranks A359178.
These partitions have ranks A364061.
Adding all 1-free partitions gives A364159, ranks A364158.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions w/ unique mode, ranks A356862, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],comodes[#]=={1}&]],{n,0,30}]

A364158 Numbers whose multiset of prime factors has low (i.e. least) co-mode 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 30, 32, 34, 36, 38, 42, 46, 50, 54, 58, 62, 64, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100, 102, 106, 108, 110, 114, 118, 122, 126, 128, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Except for 1, this is the lists of all even numbers whose prime factorization contains at most as many 2's as non-2 parts.
Extending the terminology of A124943, the "low co-mode" of a multiset is the least co-mode.

Examples

			The terms together with their prime factorizations begin:
   1 =
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  10 = 2*5
  14 = 2*7
  16 = 2*2*2*2
  18 = 2*3*3
  22 = 2*11
  26 = 2*13
  30 = 2*3*5
  32 = 2*2*2*2*2
  34 = 2*17
  36 = 2*2*3*3
		

Crossrefs

Partitions of this type are counted by A364159.
Positions of 1's in A364191, high A364192, modes A363486, high A363487.
For median we have A363488, positions of 1 in A363941, triangle A124943.
For mode instead of co-mode we have A360015, counted by A241131.
A027746 lists prime factors (with multiplicity), length A001222.
A362611 counts modes in prime factorization, triangle A362614
A362613 counts co-modes in prime factorization, triangle A362615
Ranking partitions:
- A356862: unique mode, counted by A362608
- A359178: unique co-mode, counted by A362610
- A362605: multiple modes, counted by A362607
- A362606: multiple co-modes, counted by A362609

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],#==1||Min[comodes[prifacs[#]]]==2&]

A327471 Number of subsets of {1..n} not containing their mean.

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 48, 102, 214, 440, 900, 1830, 3706, 7486, 15092, 30380, 61100, 122780, 246566, 494912, 992984, 1991620, 3993446, 8005388, 16044460, 32150584, 64414460, 129037790, 258462026, 517641086, 1036616262, 2075721252, 4156096036, 8320912744, 16658202200
Offset: 0

Views

Author

Gus Wiseman, Sep 12 2019

Keywords

Examples

			The a(1) = 1 through a(5) = 22 subsets:
  {}  {}     {}     {}         {}
      {1,2}  {1,2}  {1,2}      {1,2}
             {1,3}  {1,3}      {1,3}
             {2,3}  {1,4}      {1,4}
                    {2,3}      {1,5}
                    {2,4}      {2,3}
                    {3,4}      {2,4}
                    {1,2,4}    {2,5}
                    {1,3,4}    {3,4}
                    {1,2,3,4}  {3,5}
                               {4,5}
                               {1,2,4}
                               {1,2,5}
                               {1,3,4}
                               {1,4,5}
                               {2,3,5}
                               {2,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
		

Crossrefs

Subsets containing their mean are A065795.
Subsets containing n but not their mean are A327477.
Partitions not containing their mean are A327472.
Strict partitions not containing their mean are A240851.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!MemberQ[#,Mean[#]]&]],{n,0,10}]
  • Python
    from sympy import totient, divisors
    def A327471(n): return (1<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))>>1) # Chai Wah Wu, Feb 22 2023

Formula

a(n) = 2^n - A065795(n). - Alois P. Heinz, Sep 13 2019

Extensions

More terms from Alois P. Heinz, Sep 13 2019

A362617 Numbers whose prime factorization has both (1) even length, and (2) unequal middle parts.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166, 177
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is not a prime factor of n, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 60 is 2*2*3*5, with middle parts (2,3), so 60 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238479.
The complement (without 1) is A362618, counted by A238478.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362605 ranks partitions with more than one mode, counted by A362607.
A362611 counts modes in prime factorization, triangle version A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.
Contains A006881 and (except for 1) A030229.

Programs

  • Maple
    filter:= proc(n) local F,m;
      F:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(F);
      m::even and F[m/2] <> F[m/2+1]
    end proc:
    select(filter, [$2..200]); # Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[prifacs[#],Median[prifacs[#]]]&]

A362562 Number of non-constant integer partitions of n having a unique mode equal to the mean.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 52, 12, 14, 33, 54, 0, 121, 0, 98, 76, 31, 100, 343, 0, 45, 164, 493, 0, 548, 0, 483, 757, 88, 0, 1789, 289, 979, 645, 1290, 0, 2225, 1677, 3371, 1200, 221, 0, 10649
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(8) = 1 through a(16) = 7 partitions:
  (3221)  .  (32221)  .  (4332)    .  (3222221)  (43332)  (5443)
                         (5331)       (3322211)  (53331)  (6442)
                         (322221)     (4222211)  (63321)  (7441)
                         (422211)                         (32222221)
                                                          (33222211)
                                                          (42222211)
                                                          (52222111)
		

Crossrefs

Partitions containing their mean are counted by A237984, ranks A327473.
Partitions missing their mean are counted by A327472, ranks A327476.
Allowing constant partitions gives A363723.
Including median also gives A363728, ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}==modes[#]&]],{n,0,30}]

A362618 Numbers whose prime factorization has either (1) odd length, or (2) equal middle parts.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is a prime factor of n.

Examples

			The prime factorization of 90 is 2*3*3*5, with middle parts (3,3), so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238478.
The complement (without 1) is A362617, counted by A238479.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362611 ranks modes in prime factorization, counted by A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],MemberQ[prifacs[#],Median[prifacs[#]]]&]

A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A363719 - 1 for n > 0.
Including primes gives A363727, counted by A363719.
For prime powers instead of just primes we have A363729, counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

Formula

Complement of A000040 in A363727.
Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)).

A364191 Low co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 1, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 2, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "low co-mode" in a multiset is the least co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 2.
		

Crossrefs

For prime factors instead of indices we have A067695, high A359612.
For mode instead of co-mode we have A363486, high A363487, triangle A363952.
For median instead of co-mode we have A363941, high A363942.
Positions of 1's are A364158, counted by A364159.
The high version is A364192 = positions of 1's in A364061.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Min[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A067695(n)).
A067695(n) = A000040(a(n)).

A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 1, 7, 6, 16, 1, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 2, 8, 5, 6, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4.
		

Crossrefs

For prime factors instead of indices we have A359612, low A067695.
For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952).
The version for median instead of co-mode is A363942, low A363941.
Positions of 1's are A364061, counted by A364062.
The low version is A364191, 1's at A364158 (counted by A364159).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A359612(n)).
A359612(n) = A000040(a(n)).
Previous Showing 31-40 of 53 results. Next