cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A329614 Smallest prime factor of the number of divisors of A108951(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Differs from A071187 for the first time at n=324, where a(324) = 5, while A071187(324) = 3. The positions of the differences are listed at A329613.

Examples

			324 = 18^2 = 2^2 * 3^4, thus A108951(324) = 2^2 * (2*3)^4 = 2^6 * 3^4 = 5184, which has (6+1)*(4+1) = 7 * 5 = 35 divisors, thus a(324) = A020639(35) = 5.
		

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[DivisorSigma[0, #]][[1, 1]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1]));
    A329614(n) = A071187(A108951(n));

Formula

a(n) = A071187(A108951(n)).
a(n) = A020639(A329605(n)).

A329378 Least common multiple of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 6, 2, 3, 1, 12, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 6, 3, 2, 6, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 6, 3, 4, 1, 6, 1, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Differs from related A329617 for the first time at n=36.

Programs

Formula

a(n) = A072411(A108951(n)) = A072411(A329600(n)).
a(n) <= A329617(n) <= A329382(n) <= A329605(n).
a(A019565(n)) = A284002(n).

A329617 Product of distinct exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 5, 2, 2, 2, 8, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 6, 2, 3, 1, 12, 2, 4, 2, 2, 1, 8, 1, 2, 3, 6, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 6, 3, 2, 6, 1, 5, 4, 2, 1, 8, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 6, 3, 8, 1, 6, 1, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Differs from related A329378 for the first time at n=36. See also A329382.

Programs

Formula

a(n) = A290107(A108951(n)) = A290107(A329600(n)).
A329378(n) <= a(n) <= A329382(n) <= A329605(n).

A329612 a(n) = gcd(d(n), d(A108951(n))), where d(n) gives the number of divisors of n, A000005(n), and A108951 is fully multiplicative with a(prime(i)) = prime(i)# = prime(1) * ... * prime(i).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 4, 2, 2, 2, 4, 2, 5, 2, 6, 2, 2, 4, 4, 2, 2, 3, 4, 4, 2, 2, 8, 2, 6, 4, 4, 2, 3, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 3, 6, 4, 2, 2, 4, 4, 8, 4, 4, 2, 6, 2, 4, 2, 7, 4, 8, 2, 2, 4, 8, 2, 6, 2, 4, 6, 2, 2, 8, 2, 2, 5, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 2, 4, 4, 4, 2, 2, 6, 2, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000005(n),A329605(n)) = gcd(A000005(n),A000005(A108951(n))).

A331285 a(n) is the index of the first occurrence of n in A331284.

Original entry on oeis.org

1, 8, 27, 108, 180, 396, 672, 1056, 1372, 1760, 2352, 3087, 3696, 3744, 4896, 5733, 7497, 9724, 11907, 13600, 15200, 18513, 19773, 23940, 24752, 28917, 32319, 33534, 42282, 45472, 47500, 52668, 55890, 59976, 66048, 74240, 77792, 81144, 86944, 100035, 105248, 109368, 122825, 127908, 134368, 144648, 156325, 168948, 175770
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Comments

Also positions of records in A331284.
a(n) is the least k such that in range 1 .. k of A329605 (equally: in A329606[1..k]) there can be found exactly n occurrences of some term. In A329605 these "champion terms" are A329605(a(n)): 1, 4, 16, 24, 48, 192, 96, 192, 384, 288, 288, 576, 576, 576, 1152, 2304, 4608, 9216, 576, 2304, ..., that appear all to be 3-smooth numbers (in A003586).
For example, a(5)=180 and 48 is the first term in A329605 to occur for five times, as A329605(22) = A329605(42) = A329605(75) = A329605(112) = A329605(180) = 48.

Crossrefs

Cf. A331284 (a left inverse).

Formula

A331284(a(n)) = n for all n >= 1.
Previous Showing 11-15 of 15 results.