A329865
Numbers whose binary expansion has the same runs-resistance as cuts-resistance.
Original entry on oeis.org
0, 8, 12, 14, 17, 24, 27, 28, 35, 36, 39, 47, 49, 51, 54, 57, 61, 70, 73, 78, 80, 99, 122, 130, 156, 175, 184, 189, 190, 198, 204, 207, 208, 215, 216, 226, 228, 235, 243, 244, 245, 261, 271, 283, 295, 304, 313, 321, 322, 336, 352, 367, 375, 378, 379, 380, 386
Offset: 1
The sequence of terms together with their binary expansions begins:
0:
8: 1000
12: 1100
14: 1110
17: 10001
24: 11000
27: 11011
28: 11100
35: 100011
36: 100100
39: 100111
47: 101111
49: 110001
51: 110011
54: 110110
57: 111001
61: 111101
70: 1000110
73: 1001001
78: 1001110
80: 1010000
For example, 36 has runs-resistance 3 because we have (100100) -> (1212) -> (1111) -> (4), while the cuts-resistance is also 3 because we have (100100) -> (00) -> (0) -> ().
Similarly, 57 has runs-resistance 3 because we have (111001) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have (111001) -> (110) -> (1) -> ().
The version for runs-resistance equal to cuts-resistance minus 1 is
A329866.
Compositions with runs-resistance equal to cuts-resistance are
A329864.
Runs-resistance of binary expansion is
A318928.
Cuts-resistance of binary expansion is
A319416.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Select[Range[0,100],#==0||runsres[IntegerDigits[#,2]]==degdep[IntegerDigits[#,2]]&]
A319420
Irregular triangle read by rows: row n lists the cuts-resistances of the 2^n binary vectors of length n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 3, 4, 5
Offset: 0
Triangle begins:
0,
1,1,
2,1,1,2,
3,2,1,2,2,1,2,3,
4,3,2,2,2,1,2,3,3,2,1,2,2,2,3,4,
5,4,3,3,3,2,2,3,3,2,1,2,2,2,3,4,4,3,2,2,2,1,2,3,3,2,2,2,3,3,3,4,5,
...
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. See table on page 4.
Keeping the first digit gives
A319416.
Positions of 1's are the terms > 1 of
A061547 and
A086893, all minus 1.
The version for runs-resistance is
A329870.
Compositions counted by cuts-resistance are
A329861.
-
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Table[degdep[Rest[IntegerDigits[n,2]]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)
A329750
Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 6, 6, 1, 1, 0, 4, 9, 15, 3, 1, 0, 2, 16, 22, 22, 1, 1, 0, 0, 8, 37, 38, 41, 3, 1, 0, 0, 0, 26, 86, 69, 72, 2, 1, 0, 0, 0, 2, 78, 175, 124, 129, 3, 1, 0, 0, 0, 0, 14, 202, 367, 226, 213, 1, 1, 0, 0, 0, 0, 0, 52, 469, 750, 376, 395, 5, 1
Offset: 1
Triangle begins:
1
1 1
2 1 1
2 3 2 1
2 6 6 1 1
0 4 9 15 3 1
0 2 16 22 22 1 1
0 0 8 37 38 41 3 1
0 0 0 26 86 69 72 2 1
0 0 0 2 78 175 124 129 3 1
0 0 0 0 14 202 367 226 213 1 1
0 0 0 0 0 52 469 750 376 395 5 1
Row n = 6 counts the following compositions:
(1,1,3,1) (1,1,4) (1,5) (3,3) (6)
(1,3,1,1) (4,1,1) (2,4) (2,2,2)
(1,1,1,2,1) (1,1,1,3) (4,2) (1,1,1,1,1,1)
(1,2,1,1,1) (1,2,2,1) (5,1)
(2,1,1,2) (1,2,3)
(3,1,1,1) (1,3,2)
(1,1,1,1,2) (1,4,1)
(1,1,2,1,1) (2,1,3)
(2,1,1,1,1) (2,3,1)
(3,1,2)
(3,2,1)
(1,1,2,2)
(1,2,1,2)
(2,1,2,1)
(2,2,1,1)
The version with rows reversed is
A329744.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}]
A329867
Runs-resistance minus cuts-resistance of the binary expansion of n.
Original entry on oeis.org
0, -1, 1, -1, 1, 1, 1, -2, 0, 1, 1, 2, 0, 2, 0, -3, -1, 0, 3, 2, 2, 1, 3, 1, 0, 2, 2, 0, 0, 1, -1, -4, -2, -1, 2, 0, 0, 3, 2, 0, 1, 3, 1, 2, 1, 2, 2, 0, -1, 0, 1, 0, 2, 2, 0, -1, -1, 0, 1, -1, -1, 0, -2, -5, -3, -2, 1, -1, -1, 2, 0, 1, -1, 0, 3, 4, 2, 3, 0
Offset: 0
The sequence of binary expansions together with their runs-resistances and cuts-resistances, and their differences, begins:
0 (): 0 - 0 = 0
1 (1): 0 - 1 = -1
2 (10): 2 - 1 = 1
3 (11): 1 - 2 = -1
4 (100): 3 - 2 = 1
5 (101): 2 - 1 = 1
6 (110): 3 - 2 = 1
7 (111): 1 - 3 = -2
8 (1000): 3 - 3 = 0
9 (1001): 3 - 2 = 1
10 (1010): 2 - 1 = 1
11 (1011): 4 - 2 = 2
12 (1100): 2 - 2 = 0
13 (1101): 4 - 2 = 2
14 (1110): 3 - 3 = 0
15 (1111): 1 - 4 = -3
16 (10000): 3 - 4 = -1
17 (10001): 3 - 3 = 0
18 (10010): 5 - 2 = 3
19 (10011): 4 - 2 = 2
20 (10100): 4 - 2 = 2
Sorted positions of first appearances are
A329868.
Compositions with runs-resistance equal to cuts-resistance are
A329864.
Compositions with runs-resistance = cuts-resistance minus 1 are
A329869.
Runs-resistance of binary expansion is
A318928.
Cuts-resistance of binary expansion is
A319416.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Table[If[n==0,0,runsres[IntegerDigits[n,2]]-degdep[IntegerDigits[n,2]]],{n,0,100}]
A329866
Numbers whose binary expansion has its runs-resistance equal to its cuts-resistance minus 1.
Original entry on oeis.org
1, 3, 16, 30, 33, 48, 55, 56, 59, 60, 67, 68, 72, 79, 95, 97, 110, 112, 118, 120, 121, 125, 134, 135, 137, 143, 145, 158, 160, 195, 196, 219, 220, 225, 231, 241, 250, 258, 270, 280, 286, 291, 292, 315, 316, 351, 381, 382, 390, 391, 393, 399, 415, 416, 431, 432
Offset: 1
The sequence of terms together with their binary expansions begins:
1: 1
3: 11
16: 10000
30: 11110
33: 100001
48: 110000
55: 110111
56: 111000
59: 111011
60: 111100
67: 1000011
68: 1000100
72: 1001000
79: 1001111
95: 1011111
97: 1100001
110: 1101110
112: 1110000
118: 1110110
120: 1111000
For example, 79 has runs-resistance 3 because we have (1001111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have (1001111) -> (0111) -> (11) -> (1) -> (), so 79 is in the sequence.
The version for runs-resistance equal to cuts-resistance is
A329865.
Compositions with runs-resistance equal to cuts-resistance are
A329864.
Compositions with runs-resistance = cuts-resistance minus 1 are
A329869.
Runs-resistance of binary expansion is
A318928.
Cuts-resistance of binary expansion is
A319416.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Select[Range[100],runsres[IntegerDigits[#,2]]-degdep[IntegerDigits[#,2]]==-1&]
A329868
Sorted positions of first appearances in A329867 (difference between the runs-resistance and the cuts-resistance of binary expansion) of each element in the image.
Original entry on oeis.org
0, 1, 2, 7, 11, 15, 18, 31, 63, 75, 127, 255, 511, 1023, 1234, 2047, 4095, 8191, 9638, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607
Offset: 1
The sequence of terms together with their binary expansions begins:
0:
1: 1
2: 10
7: 111
11: 1011
15: 1111
18: 10010
31: 11111
63: 111111
75: 1001011
127: 1111111
255: 11111111
511: 111111111
1023: 1111111111
1234: 10011010010
2047: 11111111111
4095: 111111111111
8191: 1111111111111
9638: 10010110100110
16383: 11111111111111
32767: 111111111111111
65535: 1111111111111111
Sorted positions of first appearances in
A329867.
Compositions with runs-resistance equal to cuts-resistance are
A329864.
Runs-resistance of binary expansion is
A318928.
Cuts-resistance of binary expansion is
A319416.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
das=Table[If[n==0,0,runsres[IntegerDigits[n,2]]-degdep[IntegerDigits[n,2]]],{n,0,1000000}];
Table[Position[das,i][[1,1]]-1,{i,First/@Gather[das]}]
A329870
Runs-resistance of the binary expansion of n without the first digit.
Original entry on oeis.org
0, 0, 1, 2, 2, 1, 1, 3, 2, 3, 3, 2, 3, 1, 1, 3, 4, 2, 4, 2, 3, 3, 3, 3, 2, 4, 2, 4, 3, 1, 1, 3, 4, 3, 3, 4, 4, 3, 4, 5, 2, 4, 4, 5, 3, 3, 3, 3, 5, 4, 4, 2, 5, 4, 3, 4, 4, 3, 3, 4, 3, 1, 1, 3, 4, 3, 3, 4, 3, 2, 3, 3, 4, 4, 2, 3, 3, 3, 4, 5, 4, 3, 4, 2, 5, 4
Offset: 2
Minimal representatives with each image are:
2: (0)
4: (0,0) -> (2)
5: (0,1) -> (1,1) -> (2)
9: (0,0,1) -> (2,1) -> (1,1) -> (2)
18: (0,0,1,0) -> (2,1,1) -> (1,2) -> (1,1) -> (2)
41: (0,1,0,0,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2)
150: (0,0,1,0,1,1,0) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1) -> (2)
Keeping the first digit gives
A318928.
Compositions counted by runs-resistance are
A329744.
-
Table[Length[NestWhileList[Length/@Split[#]&,Rest[IntegerDigits[n,2]],Length[#]>1&]]-1,{n,2,100}]
A329743
Number of compositions of n with runs-resistance n - 3.
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 9, 16, 8
Offset: 0
The a(3) = 1 through a(8) = 8 compositions:
(3) (22) (14) (114) (1123) (12113)
(1111) (23) (411) (1132) (12212)
(32) (1113) (1141) (13112)
(41) (1221) (1411) (21131)
(131) (2112) (2122) (21221)
(212) (3111) (2212) (31121)
(11112) (2311) (121112)
(11211) (3211) (211121)
(21111) (11131)
(11212)
(11221)
(12211)
(13111)
(21211)
(111121)
(121111)
For example, repeatedly taking run-lengths starting with (1,2,1,1,3) gives (1,2,1,1,3) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), which is 5 steps, and 5 = 8 - 3, so (1,2,1,1,3) is counted under a(8).
Compositions with runs-resistance 2 are
A329745.
-
runsres[q_]:=If[Length[q]==1,0,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-3&]],{n,10}]
A329768
Number of finite sequences of positive integers whose sum minus runs-resistance is n.
Original entry on oeis.org
8, 17, 42, 104, 242, 541, 1212, 2664, 5731, 12314
Offset: 1
The a(1) = 8 and a(2) = 17 compositions whose sum minus runs-resistance is n:
(1) (2)
(1,1) (1,3)
(1,2) (3,1)
(2,1) (1,1,1)
(1,1,2) (1,1,3)
(2,1,1) (1,2,1)
(1,1,2,1) (1,2,2)
(1,2,1,1) (2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,3,1)
(1,3,1,1)
(2,1,1,1)
(1,1,1,2,1)
(1,2,1,1,1)
(1,2,1,1,2)
(2,1,1,2,1)
Comments