A333092
a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(3*n) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 7, 109, 1951, 36993, 724007, 14457421, 292732671, 5987886081, 123440423047, 2560421160109, 53373725431583, 1117198199782785, 23465732683090471, 494330214846965389, 10440064992542621951, 220978578227187097601, 4686426367646858888711, 99559270036968523118317
Offset: 0
n-th order Taylor polynomial of S(x)^(3*n):
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^3 = 1 + 6*x + O(x^2)
n = 2: S(x)^6 = 1 + 12*x + 96*x^2 + O(x^3)
n = 3: S(x)^9 = 1 + 18*x + 198*x^2 + 1734*x^3 + O(x^4)
n = 4: S(x)^12 = 1 + 24*x + 336*x^2 + 3608*x^3 + 33024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 6 = 7, a(2) = 1 + 12 + 96 = 109, a(3) = 1 + 18 + 198 + 1734 = 1951 and a(4) = 1 + 24 + 336 + 3608 + 33024 = 36993.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 6 1 7
n = 2 | 96 12 1 109
n = 3 | 1734 198 18 1 1951
n = 4 | 33024 3608 336 24 1 36993
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 6, 96, 1734, 33024, 648006, ...] = [x^n] S(x)^(3*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 23465732683090471 - 7 = (2^5)*(3^4)*(13^3)*83*911*54497 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 962815680123979633351467303 - 1951 = (2^3)*(7^3)*29*41* 1832861*161008076794727 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 201479167004032422703424646224007 - 724007 = (2^5)*(5^6)* 402958334008064845406849291 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1+x)*(1 - 3*x*(1+x) + (x^2 + x - 1)*Sqrt[1 - 4*x*(1+x)]) / (2*x^3))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A351859
a(n) = [x^n] (1 + x + x^2 + x^3)^(4*n)/(1 + x + x^2)^(3*n).
Original entry on oeis.org
1, 1, 3, 19, 67, 251, 1137, 4803, 20035, 87013, 377753, 1634469, 7134385, 31261114, 137121113, 603206144, 2660097603, 11749336328, 51981371895, 230336544210, 1021976441817, 4539784391763, 20188837618799, 89871081815631, 400427435522737, 1785639575031501
Offset: 0
Examples of supercongruences:
a(5) - a(1) = 251 - 1 = 2*(5^3) == 0 (mod 5^3)
a(2*7) - a(2) = 137121113 - 3 = 2*5*(7^4)*5711 == 0 (mod 7^4)
a(5^2) - a(5) = 1785639575031501 - 251 = 2*(5^6)*1373*3989*10433 == 0 (mod 5^6)
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
seq(add(add(add((-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)* binomial(3*n+j-1,j)*binomial(j,k), k = 0..j), j = 0..n), i = 0..n), n = 0..25);
-
A351859[n_] := Sum[(-1)^j*Binomial[4*n, n-2*i-j-k]*Binomial[4*n, i]*Binomial[3*n+j-1, j]*Binomial[j, k], {i, 0, n}, {j, 0, n}, {k, 0, j}];
Array[A351859, 25, 0] (* Paolo Xausa, May 30 2025 *)
-
a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,(-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)*binomial(3*n+j-1,j)*binomial(j,k))));
vector(25,n,a(n-1)) \\ Paolo Xausa, May 04 2022
A367639
G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^2 / (1 + x).
Original entry on oeis.org
1, 3, 6, 16, 52, 184, 688, 2672, 10672, 43552, 180800, 761088, 3241088, 13937408, 60435968, 263962880, 1160188672, 5127762432, 22775636992, 101608357888, 455105255424, 2045751037952, 9225923895296, 41731062358016, 189275050729472, 860630181167104
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+2, n-k)*binomial(2*k, k)/(k+1));
A336858
Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1, k) + T(n-1,k-1) with T(n,0) = T(n, n) = 1 (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 9, 1, 1, 7, 21, 31, 1, 1, 9, 37, 89, 121, 1, 1, 11, 57, 183, 393, 515, 1, 1, 13, 81, 321, 897, 1805, 2321, 1, 1, 15, 109, 511, 1729, 4431, 8557, 10879, 1, 1, 17, 141, 761, 3001, 9161, 22149, 41585, 52465, 1, 1, 19, 177, 1079, 4841, 17003, 48313, 112047, 206097, 258563, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 5, 9, 1;
1, 7, 21, 31, 1;
1, 9, 37, 89, 121, 1;
1, 11, 57, 183, 393, 515, 1;
1, 13, 81, 321, 897, 1805, 2321, 1;
1, 15, 109, 511, 1729, 4431, 8557, 10879, 1;
...
-
A336858row := proc(n) option remember; local T, k, row;
row := Array(0..n, fill=1);
if n = 0 then return row fi; T := procname(n-1);
for k from 1 to n-1 do row[k] := T[k] + T[k-1] + row[k-1] od; row end:
T := (n, k) -> A336858row(n)[k]:
seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 06 2020
-
T[, 0] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, k] + T[n-1, k-1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023 *)
A336859
Mirror image of triangular array A336858.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 31, 21, 7, 1, 1, 121, 89, 37, 9, 1, 1, 515, 393, 183, 57, 11, 1, 1, 2321, 1805, 897, 321, 81, 13, 1, 1, 10879, 8557, 4431, 1729, 511, 109, 15, 1, 1, 52465, 41585, 22149, 9161, 3001, 761, 141, 17, 1, 1, 258563, 206097, 112047, 48313, 17003, 4841, 1079, 177, 19, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 9, 5, 1;
1, 31, 21, 7, 1;
1, 121, 89, 37, 9, 1;
1, 515, 393, 183, 57, 11, 1;
1, 2321, 1805, 897, 321, 81, 13, 1;
1, 10879, 8557, 4431, 1729, 511, 109, 15, 1;
...
-
A000108(n) = binomial(2*n, n)/(n+1);
A086616(n) = sum(k=0, n, binomial(n+k+1, 2*k+1) * A000108(k));
T(n, k) = if ((k==0) || (n==k), 1, if ((n<0) || (k<0), 0, if (k==1, A086616(n-1), if (n>k, T(n, k-1) - T(n-1, k-1) - T(n-1, k-2), 0))));
for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 08 2020
Comments