A333225
Position of first appearance of n in A333226 (LCMs of compositions in standard order).
Original entry on oeis.org
1, 2, 4, 8, 16, 18, 64, 128, 256, 66, 1024, 68, 4096, 258, 132, 32768, 65536, 1026, 262144, 264, 516, 4098
Offset: 1
The sequence together with the corresponding compositions begins:
1: (1)
2: (2)
4: (3)
8: (4)
16: (5)
18: (3,2)
64: (7)
128: (8)
256: (9)
66: (5,2)
1024: (11)
68: (4,3)
4096: (13)
258: (7,2)
132: (5,3)
32768: (16)
65536: (17)
1026: (9,2)
262144: (19)
264: (5,4)
The version for binary indices is
A333492.
The version for prime indices is
A330225.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of
A066099.
- The product of q(k) is
A124758(k).
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
q=Table[LCM@@stc[n],{n,10000}];
Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
A337696
Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 512: (10) 2304: (3,9)
2: (2) 514: (8,2) 2560: (2,10)
4: (3) 520: (6,4) 2568: (2,6,4)
8: (4) 544: (4,6) 2592: (2,4,6)
16: (5) 640: (2,8) 4096: (13)
32: (6) 1024: (11) 8192: (14)
34: (4,2) 2048: (12) 8194: (12,2)
40: (2,4) 2050: (10,2) 8200: (10,4)
64: (7) 2052: (9,3) 8224: (8,6)
128: (8) 2056: (8,4) 8226: (8,4,2)
130: (6,2) 2082: (6,4,2) 8232: (8,2,4)
160: (2,6) 2088: (6,2,4) 8320: (6,8)
256: (9) 2176: (4,8) 8704: (4,10)
260: (6,3) 2178: (4,6,2) 8706: (4,8,2)
288: (3,6) 2208: (4,2,6) 8832: (4,2,8)
A318719 gives the Heinz numbers of the unordered version, with non-strict version
A337694.
A337667 counts the non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case
A319786.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A333227 ranks pairwise coprime compositions, or
A335235 if singletons are considered coprime.
-
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
A335236 ranks compositions neither a singleton nor pairwise coprime.
-
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
-
A337666 ranks the non-strict version.
Cf.
A082024,
A101268,
A302797,
A305713,
A319752,
A327040,
A327516,
A336737,
A337599,
A337604,
A337605.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]
A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
A335241
Numbers whose prime indices are not pairwise coprime, where a singleton is not coprime unless it is {1}.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 18, 19, 21, 23, 25, 27, 29, 31, 36, 37, 39, 41, 42, 43, 45, 47, 49, 50, 53, 54, 57, 59, 61, 63, 65, 67, 71, 72, 73, 75, 78, 79, 81, 83, 84, 87, 89, 90, 91, 97, 98, 99, 100, 101, 103, 105, 107, 108, 109, 111, 113, 114, 115, 117, 121
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 31: {11} 61: {18}
3: {2} 36: {1,1,2,2} 63: {2,2,4}
5: {3} 37: {12} 65: {3,6}
7: {4} 39: {2,6} 67: {19}
9: {2,2} 41: {13} 71: {20}
11: {5} 42: {1,2,4} 72: {1,1,1,2,2}
13: {6} 43: {14} 73: {21}
17: {7} 45: {2,2,3} 75: {2,3,3}
18: {1,2,2} 47: {15} 78: {1,2,6}
19: {8} 49: {4,4} 79: {22}
21: {2,4} 50: {1,3,3} 81: {2,2,2,2}
23: {9} 53: {16} 83: {23}
25: {3,3} 54: {1,2,2,2} 84: {1,1,2,4}
27: {2,2,2} 57: {2,8} 87: {2,10}
29: {10} 59: {17} 89: {24}
The version for relatively prime instead of coprime is
A318978.
The version for standard compositions is
A335239.
These are the Heinz numbers of the partitions counted by
A335240.
Singleton or pairwise coprime partitions are counted by
A051424.
Singleton or pairwise coprime sets are ranked by
A087087.
Primes and numbers with pairwise coprime prime indices are
A302569.
Numbers whose binary indices are pairwise coprime are
A326675.
Coprime standard composition numbers are
A333227.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!CoprimeQ@@primeMS[#]&]
Comments